Skip to main content

Advertisement

Log in

The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club

  • Position Paper
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The exact role of biochemical markers of bone turnover in the management of metabolic bone diseases remains a topic of controversy. In this consensus paper, the Belgian Bone Club aimed to provide a state of the art on the use of these biomarkers in different clinical or physiological situations like in postmenopausal women, osteoporosis in men, in elderly patients, in patients suffering from bone metastasis, in patients with chronic renal failure, in pregnant or lactating women, in intensive care patients, and in diabetics. We also gave our considerations on the analytical issues linked to the use of these biomarkers, on potential new emerging biomarkers, and on the use of bone turnover biomarkers in the follow-up of patients treated with new drugs for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. doi:10.1007/s00198-012-2074-y

    Article  CAS  PubMed  Google Scholar 

  2. Rizzoli R, Branco J, Brandi M et al (2014) Management of osteoporosis of the oldest old. Osteoporos Int 25:2507–2529. doi:10.1007/s00198-014-2755-9

    Article  CAS  PubMed  Google Scholar 

  3. Vasikaran S, Eastell R, Bruyère O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420. doi:10.1007/s00198-010-1501-1

    Article  CAS  PubMed  Google Scholar 

  4. Bruyère O, Reginster J-Y (2014) Monitoring of osteoporosis therapy. Best Pract Res Clin Endocrinol Metab 28:835–841. doi:10.1016/j.beem.2014.07.001

    Article  PubMed  Google Scholar 

  5. Garnero P (2014) New developments in biological markers of bone metabolism in osteoporosis. Bone 66:46–55. doi:10.1016/j.bone.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  6. Halleen JM, Alatalo SL, Suominen H et al (2000) Tartrate-resistant acid phosphatase as a serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  CAS  PubMed  Google Scholar 

  7. Garnero P, Borel O, Byrjalsen I et al (1999) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–32352. doi:10.1074/jbc.273.48.32347

    Article  Google Scholar 

  8. Lotinun S, Kiviranta R, Matsubara T et al (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123:666–681. doi:10.1172/JCI64840

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Bezooijen RL, Roelen BAJ, Visser A et al (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814. doi:10.1084/jem.20031454

    Article  PubMed  PubMed Central  Google Scholar 

  10. Papapoulos SE (2011) Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis 70(Suppl 1):i119–i122. doi:10.1136/ard.2010.141150

    Article  CAS  PubMed  Google Scholar 

  11. Joiner DM, Ke J, Zhong Z et al (2013) Lrp5 and Lrp 6 in development and disease. Trends Endocrinol Metab 24:31–39. doi:10.1016/j.tem.2012.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunkow ME, Gardner JC, Van Ness J et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589. doi:10.1086/318811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ardawi M-SM, Al-Sibiany AM, Bakhsh TM et al (2012) Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int 23:1789–1797. doi:10.1007/s00198-011-1806-8

    Article  CAS  PubMed  Google Scholar 

  14. Garnero P, Sornay-Rendu E, Munoz F et al (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24:489–494. doi:10.1007/s00198-012-1978-x

    Article  CAS  PubMed  Google Scholar 

  15. Durosier C, van Lierop A, Ferrari S et al (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98:3873–3883. doi:10.1210/jc.2013-2113

    Article  CAS  PubMed  Google Scholar 

  16. Pelletier S, Dubourg L, Carlier MC et al (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8:819–823. doi:10.2215/CJN.07670712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biver E, Chopin F, Coiffier G et al (2012) Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Jt Bone Spine 79:20–25. doi:10.1016/j.jbspin.2011.05.003

    Article  Google Scholar 

  18. Rogers A, Hannon RA, Eastell R (2000) Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 15:1398–1404. doi:10.1359/jbmr.2000.15.7.1398

    Article  CAS  PubMed  Google Scholar 

  19. Garnero P, Cloos P, Sornay-Rendu E et al (2002) Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 17:826–833. doi:10.1359/jbmr.2002.17.5.826

    Article  CAS  PubMed  Google Scholar 

  20. Schousboe JT, Bauer DC, Nyman JA et al (2007) Potential for bone turnover markers to cost-effectively identify and select post-menopausal osteopenic women at high risk of fracture for bisphosphonate therapy. Osteoporos Int 18:201–210. doi:10.1007/s00198-006-0218-7

    Article  CAS  PubMed  Google Scholar 

  21. Szulc P (2012) The role of bone turnover markers in monitoring treatment in postmenopausal osteoporosis. Clin Biochem 45:907–919. doi:10.1016/j.clinbiochem.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  22. Glover SJ, Eastell R, McCloskey EV et al (2009) Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone 45:1053–1058. doi:10.1016/j.bone.2009.07.091

    Article  CAS  PubMed  Google Scholar 

  23. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446. doi:10.1016/j.bone.2007.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eastell R, Krege JH, Chen P et al (2006) Development of an algorithm for using PINP to monitor treatment of patients with teriparatide. Curr Med Res Opin 22:61–66. doi:10.1185/030079905X75096

    Article  CAS  PubMed  Google Scholar 

  25. Meunier PJ, Roux C et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–68. doi:10.1007/s00223-009-9233-y

    Article  CAS  PubMed  Google Scholar 

  26. Blumsohn A, Marin F, Nickelsen T et al (2011) Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int 22:1935–1946. doi:10.1007/s00198-010-1379-y

    Article  CAS  PubMed  Google Scholar 

  27. Delmas PD, Vrijens B, Eastell R et al (2007) Effect of monitoring bone turnover markers on persistence with risedronate treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 92:1296–1304. doi:10.1210/jc.2006-1526

    Article  CAS  PubMed  Google Scholar 

  28. Baim S, Miller PD (2009) Assessing the clinical utility of serum CTX in postmenopausal osteoporosis and its use in predicting risk of osteonecrosis of the jaw. J Bone Miner Res 24:561–574. doi:10.1359/jbmr.090203

    Article  CAS  PubMed  Google Scholar 

  29. Goemaere S, Van Pottelbergh I, Zmierczak H et al (2001) Inverse association between bone turnover rate and bone mineral density in community-dwelling men >70 years of age: no major role of sex steroid status. Bone 29:286–291. doi:10.1016/S8756-3282(01)00503-8

    Article  CAS  PubMed  Google Scholar 

  30. Darelid A, Nilsson M, Kindblom JM et al (2015) Bone turnover markers predict bone mass development in young adult men: a five-year longitudinal study. J Clin Endocrinol Metab 100:1460–1468. doi:10.1210/jc.2014-3947

    Article  CAS  PubMed  Google Scholar 

  31. Dennison E, Eastell R, Fall CH et al (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 10:384–391

    Article  CAS  PubMed  Google Scholar 

  32. Stoch SA, Parker RA, Chen L et al (2001) Bone loss in men with prostate cancer treated with gonadotropin-releasing hormone agonists. J Clin Endocrinol Metab 86:2787–2791. doi:10.1210/jcem.86.6.7558

    CAS  PubMed  Google Scholar 

  33. Szulc P, Montella A, Delmas PD (2008) High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis 67:1249–1255. doi:10.1136/ard.2007.077941

    Article  CAS  PubMed  Google Scholar 

  34. Bauer DC, Garnero P, Harrison SL et al (2009) Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J Bone Miner Res 24:2032–2038. doi:10.1359/JBMR.090526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meier C, Nguyen TV, Center JR et al (2005) Bone resorption and osteoporotic fractures in elderly men: the dubbo osteoporosis epidemiology study. J Bone Miner Res 20:579–587. doi:10.1359/JBMR.041207

    Article  PubMed  Google Scholar 

  36. Luukinen H, Käkönen SM, Pettersson K et al (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15:2473–2478. doi:10.1359/jbmr.2000.15.12.2473

    Article  CAS  PubMed  Google Scholar 

  37. Kaufman J-M, Lapauw B, Goemaere S (2014) Current and future treatments of osteoporosis in men. Best Pract Res Clin Endocrinol Metab 28:871–884. doi:10.1016/j.beem.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  38. Orwoll E, Teglbjærg CS, Langdahl BL et al (2012) A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab 97:3161–9. doi:10.1210/jc.2012-1569

    Article  CAS  PubMed  Google Scholar 

  39. Smith M, Egerdie B, Toriz NH et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755. doi:10.1056/NEJMoa1404595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Orwoll ES, Scheele WH, Paul S et al (2003) The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17. doi:10.1359/jbmr.2003.18.1.9

    Article  CAS  PubMed  Google Scholar 

  41. Farahmand P, Marin F, Hawkins F et al (2013) Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int 24:2971–2981. doi:10.1007/s00198-013-2379-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seibel MJ (2005) Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 26:97–122

    PubMed  PubMed Central  Google Scholar 

  43. Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8:379–389. doi:10.1038/nrrheum.2012.86

    Article  CAS  PubMed  Google Scholar 

  44. Ivaska KK, Lenora J, Gerdhem P et al (2008) Serial assessment of serum bone metabolism markers identifies women with the highest rate of bone loss and osteoporosis risk. J Clin Endocrinol Metab 93:2622–2632. doi:10.1210/jc.2007-1508

    Article  CAS  PubMed  Google Scholar 

  45. Khosla S, Melton LJ, Atkinson EJ et al (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274. doi:10.1210/jc.83.7.2266

    CAS  PubMed  Google Scholar 

  46. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD (1999) Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res 14:1614–1621. doi:10.1359/jbmr.1999.14.9.1614

    Article  CAS  PubMed  Google Scholar 

  47. Szulc P (2011) Biochemical bone turnover markers and osteoporosis in older men: where are we? J Osteoporos. doi:10.4061/2011/704015

    PubMed  PubMed Central  Google Scholar 

  48. Johansson H, Odén A, Kanis JA et al (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567. doi:10.1007/s00223-014-9842-y

    Article  CAS  PubMed  Google Scholar 

  49. Gielen E, O’Neill T, Pye S et al (2015) Bone turnover markers predict hip bone loss in elderly European men: results of the European Male Ageing Study (EMAS). Osteoporos Int 26:617–627. doi:10.1007/s00198-014-2884-1

    Article  CAS  PubMed  Google Scholar 

  50. Devogelaer J-P (2006) Glucocorticoid-induced osteoporosis: mechanisms and therapeutic approach. Rheum Dis Clin North Am 32:733–757. doi:10.1016/j.rdc.2006.09.001

    Article  PubMed  Google Scholar 

  51. Weinstein RS, Jilka RL, Michael Parfitt A, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts end osteocytes by glucocorticoids potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282. doi:10.1172/JCI2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paglia F, Dionisi S, De Geronimo S et al (2001) Biomarkers of bone turnover after a short period of steroid therapy in elderly men. Clin Chem 47:1314–6

    CAS  PubMed  Google Scholar 

  53. Szappanos Á, Toke J, Lippai D et al (2010) Bone turnover in patients with endogenous Cushing’s syndrome before and after successful treatment. Osteoporos Int 21:637–645. doi:10.1007/s00198-009-0978-y

    Article  CAS  PubMed  Google Scholar 

  54. Kaji H, Kuroki Y, Murakawa Y et al (2010) Effect of alendronate on bone metabolic indices and bone mineral density in patients treated with high-dose glucocorticoid: a prospective study. Osteoporos Int 21:1565–1571. doi:10.1007/s00198-009-1110-z

    Article  CAS  PubMed  Google Scholar 

  55. von Tirpitz C, Epp S, Klaus J et al (2003) Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur J Gastroenterol Hepatol 15:1165–1170. doi:10.1097/01.meg.0000085485.12407.82

    Article  Google Scholar 

  56. Fahrleitner A, Prenner G, Leb G et al (2003) Serum osteoprotegerin is a major determinant of bone density development and prevalent vertebral fracture status following cardiac transplantation. Bone 32:96–106. doi:10.1016/S8756-3282(02)00926-2

    Article  CAS  PubMed  Google Scholar 

  57. Devogelaer JP, Sambrook P, Reid DM et al (2013) Effect on bone turnover markers of once-yearly intravenous infusion of zoledronic acid versus daily oral risedronate in patients treated with glucocorticoids. Rheumatology (Oxford) 52:1058–1069. doi:10.1093/rheumatology/kes410

    Article  CAS  Google Scholar 

  58. Saag KG, Zanchetta JR, Devogelaer JP et al (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60:3346–3355. doi:10.1002/art.24879

    Article  CAS  PubMed  Google Scholar 

  59. Coleman R, Body JJ, Aapro M et al (2014) Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 25:1–14. doi:10.1093/annonc/mdu103

    Article  Google Scholar 

  60. Ferreira A, Alho I, Casimiro S, Costa L (2015) Bone remodeling markers and bone metastases: from cancer research to clinical implications. Bonekey Rep 4:668. doi:10.1038/bonekey.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coleman R, Costa L, Saad F et al (2011) Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol 80:411–432. doi:10.1016/j.critrevonc.2011.02.005

    Article  PubMed  Google Scholar 

  62. Costa L, Demers LM, Gouveia-Oliveira A et al (2002) Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol 20:850–856. doi:10.1200/JCO.20.3.850

    Article  CAS  PubMed  Google Scholar 

  63. Som A, Tu S-M, Liu J et al (2012) Response in bone turnover markers during therapy predicts overall survival in patients with metastatic prostate cancer: analysis of three clinical trials. Br J Cancer 107:1547–53. doi:10.1038/bjc.2012.436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abildgaard N, Brixen K, Eriksen EF et al (2004) Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma. Haematologica 89:567–577

    CAS  PubMed  Google Scholar 

  65. Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935. doi:10.1200/JCO.2005.06.091

    Article  CAS  PubMed  Google Scholar 

  66. Body J-J (2012) Denosumab for the management of bone disease in patients with solid tumors. Expert Rev Anticancer Ther 12:307–322. doi:10.1586/era.11.204

    Article  CAS  PubMed  Google Scholar 

  67. Brown JE, Cook RJ, Major P et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69. doi:10.1093/jnci/dji002

    Article  CAS  PubMed  Google Scholar 

  68. Delanaye P, Souberbielle J-CC, Lafage-Proust MH et al (2014) Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 29:997–1004. doi:10.1093/ndt/gft275

    Article  CAS  PubMed  Google Scholar 

  69. Torres PU, Bover J, Mazzaferro S et al (2014) When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol 34:612–625. doi:10.1016/j.semnephrol.2014.09.004

    Article  PubMed  Google Scholar 

  70. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. doi:10.1038/ki.2009.188

    Google Scholar 

  71. Cavalier E, Delanaye P, Vranken L et al (2011) Interpretation of serum PTH concentrations with different kits in dialysis patients according to the KDIGO guidelines: importance of the reference (normal) values. Nephrol Dial Transplant 27:1950–6. doi:10.1093/ndt/gfr535

    Article  PubMed  Google Scholar 

  72. Chu P, Chao TY, Lin YF et al (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059. doi:10.1016/S0272-6386(03)00203-8

    Article  CAS  PubMed  Google Scholar 

  73. Moorthi RN, Moe SM (2014) Recent advances in the noninvasive diagnosis of renal osteodystrophy. Kidney Int 84:886–894. doi:10.1038/ki.2013.254.Recent

    Article  Google Scholar 

  74. Malluche HH, Davenport DL, Cantor T, Monier-Faugere M-C (2014) Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol 9:1254–1262. doi:10.2215/CJN.09470913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanz-Salvador L, Garcia-Perez MA, Tarin JJ, Cano A (2014) ENDOCRINOLOGY IN PREGNANCY: bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol 172:R53–R65. doi:10.1530/EJE-14-0424

    Article  PubMed  Google Scholar 

  76. Honjo S, Mizunuma H (2001) Changes in biochemical parameters of bone turnover and bone mineral density in post-pregnancy osteoporosis. Am J Obstet Gynecol 185:246–247. doi:10.1067/mob.2001.113910

    Article  CAS  PubMed  Google Scholar 

  77. Orford N, Cattigan C, Brennan SL et al (2014) The association between critical illness and changes in bone turnover in adults: a systematic review. Osteoporos Int 25:2335–2346. doi:10.1007/s00198-014-2734-1

    Article  CAS  PubMed  Google Scholar 

  78. Rousseau A-F, Damas P, Janssens M et al (2014) Critical care and vitamin D status assessment: what about immunoassays and calculated free 25OH-D? Clin Chim Acta 437:43–47. doi:10.1016/j.cca.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  79. Orford NR, Saunders K, Merriman E et al (2011) Skeletal morbidity among survivors of critical illness. Crit Care Med 39:1295–1300. doi:10.1097/CCM.0b013e318211ff3d

    Article  PubMed  Google Scholar 

  80. Klein GL, Xie Y, Bonewald LF (2014) Preliminary evidence of early bone resorption in a sheep model of acute burn injury : an observational study. J Bone Miner Metab 32:136–141. doi:10.1007/s00774-013-0483-4

    Article  PubMed  Google Scholar 

  81. Klein GL et al (1993) Bone disease in burn patients. J Bone Miner Res 8:337–345

    Article  CAS  PubMed  Google Scholar 

  82. Terzi R, Güven M (2015) Bone mineral density after burn injury and its relation to the characteristics of scar tissue. J Burn Care Res 1–5. doi: 10.1097/BCR.0000000000000241

  83. Klein L, Herndon DN, Craig BL (1995) Long-term reduction in bone mass after severe burn injury in children. J Pediatr 126:252–6

    Article  CAS  PubMed  Google Scholar 

  84. Nierman DM, Mechanick JI (2000) Biochemical response to treatment of bone hyperresorption in chronically critically ill patients. Chest 118:761–766. doi:10.1378/chest.118.3.761

    Article  CAS  PubMed  Google Scholar 

  85. Klein GL, Wimalawansa SJ, Kulkarni G et al (2005) The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos Int 16:631–635. doi:10.1007/s00198-004-1731-1

    Article  CAS  PubMed  Google Scholar 

  86. Przkora R, Herndon DN, Sherrard DJ et al (2007) Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone 41:297–302. doi:10.1016/j.bone.2007.04.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Porro LJ et al (2012) Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg 214:489–504. doi:10.1016/j.biotechadv.2011.08.021.Secreted

    Article  PubMed  PubMed Central  Google Scholar 

  88. Przkora R, Herndon DN, Suman OE et al (2006) Beneficial effects of extended growth hormone treatment after hospital discharge in pediatric burn patients. Ann Surg 243:796–801. doi:10.1097/01.sla.0000219676.69331.fd, discussion 801–803

    Article  PubMed  PubMed Central  Google Scholar 

  89. Khan TS, Fraser L-A (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015:1–8. doi:10.1155/2015/174186

    Article  Google Scholar 

  90. Dede AD, Tournis S, Dontas I, Trovas G (2014) Type 2 diabetes mellitus and fracture risk. Metabolism 63:1480–1490. doi:10.1016/j.metabol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  91. Gilbert MP, Pratley RE (2015) The impact of diabetes and diabetes medications on bone health. Endocr Rev 36:194–213. doi:10.1210/er.2012-1042

    Article  CAS  PubMed  Google Scholar 

  92. Farr JN, Khosla S (2016) Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82:28–34. doi:10.1016/j.bone.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  93. Ferrari S (2014) Future directions for new medical entities in osteoporosis. Best Pract Res Clin Endocrinol Metab 28:859–870. doi:10.1016/j.beem.2014.08.002

    Article  PubMed  Google Scholar 

  94. Bone HG, McClung MR, Roux C et al (2009) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947. doi:10.1359/jbmr.091035

    Google Scholar 

  95. Borel O, Gineyts E, Bertholon C, Garnero P (2012) Cathepsin K preferentially solubilizes matured bone matrix. Calcif Tissue Int 91:32–39. doi:10.1007/s00223-012-9604-7

    Article  CAS  PubMed  Google Scholar 

  96. Pennypacker BL, Chen CM, Zheng H et al (2014) Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res 29:1847–1858. doi:10.1002/jbmr.2211

    Article  CAS  PubMed  Google Scholar 

  97. McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–20. doi:10.1056/NEJMoa1305224

    Article  CAS  PubMed  Google Scholar 

  98. Ominsky MS, Niu QT, Li C et al (2014) Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29:1424–1430. doi:10.1002/jbmr.2152

    Article  CAS  PubMed  Google Scholar 

  99. Nioi P, Taylor S, Hu R et al (2015) Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. J Bone Miner Res 30:1457–1467. doi:10.1002/jbmr.2482

    Article  CAS  PubMed  Google Scholar 

  100. Leder BZ, O’Dea LSL, Zanchetta JR et al (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100:697–706. doi:10.1210/jc.2014-3718

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cavalier.

Ethics declarations

Conflicts of interest

Etienne Cavalier, Pierre Bergmann, Olivier Bruyère, Pierre Delanaye, Anne Durnez, Jean-Pierre Devogelaer, Serge L. Ferrari, Evelien Gielen, Stefan Goemaere, Jean-Marc Kaufman, Adrien Nzeusseu Toukap, Jean-Yves Reginster, Anne-Françoise Rousseau, Serge Rozenberg, André J. Scheen and Jean-Jacques Body declare that they have no conflicts of interests related to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalier, E., Bergmann, P., Bruyère, O. et al. The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporos Int 27, 2181–2195 (2016). https://doi.org/10.1007/s00198-016-3561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3561-3

Keywords

Navigation