Skip to main content
Log in

Numerical simulation of Mach reflection of cellular detonations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  2. Hornung, H.: Regular and Mach reflection of shock waves. Ann. Rev. Fluid Mech. 18, 33–58 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. von Neumann, J.: Collected Works, vol. 6. Pergamon, Oxford (1961)

    MATH  Google Scholar 

  4. Ben-Dor, G., Dewey, J.M., Takayama, K.: The reflection of a plane shock wave over a double wedge. J. Fluid Mech. 176, 483–520 (1987)

    Article  Google Scholar 

  5. Ben-Dor, G., Dewey, J.M., McMillin, D.J., Takayama, K.: Experimental investigation of the asymptotically approached Mach reflection over the second surface in a double wedge reflection. Exp. Fluids 6(7), 429–434 (1988)

    Article  Google Scholar 

  6. Hornung, H.G., Oertel, H., Sandeman, R.J.: Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech. 90, 541–560 (1979)

    Article  Google Scholar 

  7. Lau-Chapdelaine, S.M., Radulescu, M.I.: Non-uniqueness of solutions in asymptotically self-similar shock reflections. Shock Waves 23(6), 595–602 (2013)

    Article  Google Scholar 

  8. Sandeman, J., Leitch, A., Hornung, H.: The influence of relaxation on transition to Mach reflection in pseudosteady flow. In: 12nd International Symposium on Shock Tubes and Waves, pp. 298–307. Magnes Press, Jerusalem (1979)

  9. Ong, R.: On the interaction of a Chapman–Jouguet detonation wave with a wedge. PhD Thesis, University of Michigan, Ann Arbor (1955)

  10. Akbar, R.: Mach reflection of gaseous detonations. PhD Thesis, Rensselaer Polytechnic Institute, Troy (1997)

  11. Li, H., Ben-Dor, G., Grönig, H.: Analytical study of the oblique reflection of detonation waves. AIAA J. 35(11), 1712–1720 (1997)

    Article  MATH  Google Scholar 

  12. Shepherd, J., Schultz, E., Akbar, R.: Detonation diffraction. In: 22nd International Symposium on Shock Waves, pp. 18–23. Imperial College, UK (1999)

  13. Fortin, Y., Liu, J., Lee, J.H.S.: Mach reflection of cellular detonations. Combust. Flame 162(3), 819–824 (2015)

    Article  Google Scholar 

  14. Li, J., Ning, J., Lee, J.H.S.: Mach reflection of a ZND detonation wave. Shock Waves 25(3), 293–304 (2015)

    Article  Google Scholar 

  15. Meltzer, J., Shepherd, J.E., Akbar, R., Sabet, A.: Mach reflection of detonation waves. Prog. Astron. Aero. 153, 78–94 (1993)

    Google Scholar 

  16. Ohyagi, S., Obara, T., Nakata, F., Hoshi, S.: A numerical simulation of reflection process of a detonation wave on a wedge. Shock Waves 10(3), 185–190 (2000)

    Article  MATH  Google Scholar 

  17. Wang, G., Zhang, D., Liu, K.: Numerical study on critical wedge angle of cellular detonation reflections. Chin. Phys. Lett. 27(2), 024701 (2010)

    Article  Google Scholar 

  18. Qu, Q., Khoo, B.C., Dou, H.S., Tsai, H.M.: The evolution of a detonation wave in a variable cross-sectional chamber. Shock Waves 18(3), 213–233 (2008)

    Article  MATH  Google Scholar 

  19. Hu, Z., Jiang, Z.: Wave dynamic process in cellular detonation reflection from wedges. Acta Mech. Sin. 23(1), 33–41 (2007)

    Article  MATH  Google Scholar 

  20. Trotsyuk, A.V.: Numerical study of the reflection of detonation waves from a wedge. Combust. Expl. Shock 35(6), 690–697 (1999)

    Article  Google Scholar 

  21. Wang, C., Guo, C.: On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves. Shock Waves 24(5), 467–477 (2014)

    Article  Google Scholar 

  22. Yu, Q., Grönig, H.: Numerical simulation of the reflection of detonation waves. In: 20th International Symposium on Shock Waves, pp.1143–1148. Pasadena, USA (1995)

  23. Papalexandris, M.V.: A numerical study of wedge-induced detonations. Combust. Flame 120(4), 526–538 (2000)

    Article  Google Scholar 

  24. Guo, C., Zhang, D., Xie, W.: The Mach reflection of a detonation based on soot track measurements. Combust. Flame 127(3), 2051–2058 (2001)

    Article  Google Scholar 

  25. Short, M.: A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with chain-branching kinetics. J. Fluid Mech. 430, 381–400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Short, M., Sharpe, G.J.: Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics. Combust. Theor. Model. 7(2), 401–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N., Lee, J.H.S.: Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9(3), 385–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Radulescu, M.I., Sharpe, G.J., Law, C.K., Lee, J.H.S.: The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 31–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Radulescu, M.I., Ng, H.D., Lee, J.H.S., Varatharajan, B.: The effect of argon dilution on the stability of acetylene/oxygen detonations. Proc. Combust. Inst. 29(29), 2825–2831 (2002)

    Article  Google Scholar 

  30. Borzou, B., Maxwell, B., Radulescu, M.I.: Influence of the reaction-to-induction length ratio on the stability of cellular detonations. In: 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems. Irvine, USA (2011)

  31. Deiterding, R.: Parallel adaptive simulation of multidimensional detonation structures. PhD Thesis, Brandenburgische Technische Universität Cottbus, Germany (2003)

  32. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  33. Li, H., Ben-Dor, G.: A modified CCW theory for detonation waves. Combust. Flame 113(1), 1–12 (1998)

    Article  Google Scholar 

  34. Thomas, G.O., Williams, R.L.: Detonation interaction with wedges and bends. Shock Waves 11(6), 481–492 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 11532012) and Beijing Institute of Technology Research Fund Program for Young Scholars. The authors would like to thank Jian-guo Ning of the Beijing Institute of Technology for providing computational facilities and some useful discussions about the numerical simulations. The help from R.  Deiterding in German Aerospace Center (DLR) on modification of AMROC to use a two-step chemical reaction model is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Additional information

Communicated by G. Ciccarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lee, J.H.S. Numerical simulation of Mach reflection of cellular detonations. Shock Waves 26, 673–682 (2016). https://doi.org/10.1007/s00193-016-0668-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0668-6

Keywords

Navigation