Skip to main content

Advertisement

Log in

The role of artificial intelligence in the future of urogynecology

  • Clinical Opinion
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) in medicine is a rapidly growing field aimed at using machine learning models to improve health outcomes and patient experiences. Many new platforms have become accessible and therefore it seems inevitable that we consider how to implement them in our day-to-day practice. Currently, the specialty of urogynecology faces new challenges as the population grows, life expectancy increases, and quality of life expectation is much improved. As AI has a lot of potential to promote the discipline of urogynecology, we aim to explore its abilities and possible use in the future. Challenges and risks are associated with using AI, and a responsible use of such resources is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5–17. https://doi.org/10.1016/j.artmed.2008.07.017

    Article  PubMed  Google Scholar 

  2. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31–8. https://doi.org/10.1038/s41591-021-01614-0.

    Article  CAS  PubMed  Google Scholar 

  3. Grünebaum A, Chervenak J, Pollet SL, et al. The exciting potential for ChatGPT in obstetrics and gynecology. Am J Obstet Gynecol. 2023;228(6):696–705. https://doi.org/10.1016/j.ajog.2023.03.009.

    Article  PubMed  Google Scholar 

  4. Chen Z, Liu Z, Du M, Wang Z. Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne). 2021;8:733468. https://doi.org/10.3389/fmed.2021.733468.

    Article  PubMed  Google Scholar 

  5. Iftikhar PM, Kuijpers MV, Khayyat A, et al. Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus. 2020;12(2):e7124. https://doi.org/10.7759/cureus.7124.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moawad G, Tyan P, Louie M. Artificial intelligence and augmented reality in gynecology. Curr Opin Obstet Gynecol. 2019;31(5):345–8. https://doi.org/10.1097/GCO.0000000000000559.

    Article  PubMed  Google Scholar 

  7. Emin EI, Emin E, Papalois A, et al. Artificial intelligence in obstetrics and gynaecology: is this the way forward? In Vivo (Brooklyn). 2019;33;(5):1547–51. https://doi.org/10.21873/invivo.11635

    Article  Google Scholar 

  8. Pokaprakarn T, Prieto JC, Price JT, et al. AI estimation of gestational age from blind ultrasound sweeps in low-resource settings. NEJM Evidence. 2022;1(5):https://doi.org/10.1056/evidoa2100058

  9. Hinoul P, Brölmann HAM, Roovers JP. Perspectives in urogynaecology: the surgical challenges ahead. Gynecol Surg. 2008;5:3–6.

    Article  Google Scholar 

  10. Bentaleb J, Larouche M. Innovative use of artificial intelligence in urogynecology. Int Urogynecol J. 2020;31(7):1287–8. https://doi.org/10.1007/s00192-020-04243-2.

    Article  PubMed  Google Scholar 

  11. Seval MM, Varlı B. Current developments in artificial intelligence from obstetrics and gynecology to urogynecology. Front Med (Lausanne). 2023;10:1098205. https://doi.org/10.3389/fmed.2023.1098205

    Article  PubMed  Google Scholar 

  12. Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology—current use and future directions: an iTRUE study. Turk J Urol. 2020;46;(1):S27–39. https://doi.org/10.5152/tud.2020.20117

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bentellis I, Hascoet J, Tibi B, et al. Urodynamics: all the nurse needs to know. Prog Urol. 2020;30(15):939–46. https://doi.org/10.1016/j.purol.2020.09.006.

    Article  CAS  PubMed  Google Scholar 

  14. Writing group of the International Urogynecological Association. IUGA report on reporting urodynamics in women. Int Urogynecol J. 2022;33:801–7. https://doi.org/10.1007/s00192-021-04742-w.

    Article  Google Scholar 

  15. Gulpinar O, Bacsu C, Lee D, et al. Overcoming the challenges of characterizing normal urodynamic parameters in middle-aged and older women. Can J Urol. 2014;21(4):7358–64.

    PubMed  Google Scholar 

  16. Finazzi Agrò E, Bianchi D, Iacovelli V. Pitfalls in urodynamics. Eur Urol Focus. 2020;6(5):820–2. https://doi.org/10.1016/j.euf.2020.01.005.

    Article  PubMed  Google Scholar 

  17. Wyndaele M, Rosier PFWM. Basics of videourodynamics for adult patients with lower urinary tract dysfunction. Neurourol Urodyn. 2018;37(S6):S61–S66. https://doi.org/10.1002/nau.23778

    Article  PubMed  Google Scholar 

  18. Abelson B, Majerus S, Sun D, et al. Ambulatory urodynamic monitoring: state of the art and future directions. Nat Rev Urol. 2019;16(5):291–301. https://doi.org/10.1038/s41585-019-0175-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsukawa Y, Kameya Y, Takahashi T, et al. Development of an artificial intelligence diagnostic system for lower urinary tract dysfunction in men. Int J Urol. 2021;28(11):1143–8. https://doi.org/10.1111/iju.14661

    Article  PubMed  Google Scholar 

  20. Rezazade Mehrizi MH, van Ooijen P, Homan M. Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. Eur Radiol. 2021;31(4):1805–1811. https://doi.org/10.1007/s00330-020-07230-9

    Article  PubMed  Google Scholar 

  21. Huo Y, Deng R, Liu Q, et al. AI applications in renal pathology. Kidney Int. 2021;99(6):1309–20. https://doi.org/10.1016/j.kint.2021.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. MacLean AR, Gunson R. Automation and standardisation of clinical molecular testing using PCR.Ai—a comparative performance study. J Clin Virol. 2019;120:51–6. https://doi.org/10.1016/j.jcv.2019.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. AI diagnostics need attention. Nature. 2018;555(7696):285. https://doi.org/10.1038/d41586-018-03067-x

  24. Li N, Fan L, Xu H, et al. An AI-aided diagnostic framework for hematologic neoplasms based on morphologic features and medical expertise. Lab Invest. 2023;103:100055. https://doi.org/10.1016/j.labinv.2022.100055

    Article  PubMed  Google Scholar 

  25. Savage N. Tapping into the drug discovery potential of AI. Biopharma Dealmakers. 2021. https://doi.org/10.1038/d43747-021-00045-7.

    Article  Google Scholar 

  26. Romm EL, Tsigelny IF. Artificial intelligence in drug treatment. Annu Rev Pharmacol Toxicol. 2020;60:353–69. https://doi.org/10.1146/annurev-pharmtox-010919-023746.

    Article  CAS  PubMed  Google Scholar 

  27. O’Connor E, Riogh ANA, Karavitakis M, et al. Diagnosis and non-surgical management of urinary incontinence—a literature review with recommendations for practice. Int J Gen Med. 2021;14:4555–65. https://doi.org/10.2147/IJGM.S289314.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6. https://doi.org/10.1097/SLA.0000000000002693.

    Article  PubMed  Google Scholar 

  29. Kenngott HG, Wagner M, Nickel F, et al. Computer-assisted abdominal surgery: new technologies. Langenbecks Arch Surg. 2015;400(3):273–81. https://doi.org/10.1007/s00423-015-1289-8.

    Article  CAS  PubMed  Google Scholar 

  30. Bonrath EM, Gordon LE, Grantcharov TP. Characterising “near miss” events in complex laparoscopic surgery through video analysis. BMJ Qual Saf. 2015;24(8):516–21. https://doi.org/10.1136/bmjqs-2014-003816

    Article  PubMed  Google Scholar 

  31. Rowe M, Nicholls DA, Shaw J. How to replace a physiotherapist: artificial intelligence and the redistribution of expertise. Physiother Theory Pract. 2022;38(13):2275–83. https://doi.org/10.1080/09593985.2021.1934924

    Article  PubMed  Google Scholar 

  32. Kashyap S, Venkatesh V, Pushpa MK, et al. Adaptive, AI-based automated knee physiotherapy system. Glob Trans Proc. 2021;2(2):484–491. https://doi.org/10.1016/j.gltp.2021.08.052

    Article  Google Scholar 

  33. Botelho S, Martinho NM, Silva VR, et al. Virtual reality: a proposal for pelvic floor muscle training. Int Urogynecol J. 2015;26(11):1709–12. https://doi.org/10.1007/s00192-015-2698-5.

    Article  PubMed  Google Scholar 

  34. Trolice MP, Curchoe C, Quaas AM. Artificial intelligence—the future is now. J Assist Reprod Genet. 2021;38(7):1607–12. https://doi.org/10.1007/s10815-021-02272-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mills T. The risks and benefits of AI in medicine. https://www.forbes.com/sites/forbestechcouncil/2021/03/23/the-risks-and-benefits-of-ai-in-medicine/

  36. Wolff J, Pauling J, Keck A, Baumbach J. The economic impact of artificial intelligence in health care: systematic review. J Med Internet Res. 2020;22(2):e16866.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Norton PA, Nager CW, Brubaker L, et al. The cost of preoperative urodynamics: a secondary analysis of the ValUE trial. Neurourol Urodyn. 2016;35(1):81–4. https://doi.org/10.1002/nau.22684

    Article  PubMed  Google Scholar 

  38. Weber AM, Walters MD. Cost-effectiveness of urodynamic testing before surgery for women with pelvic organ prolapse and stress urinary incontinence. Am J Obstet Gynecol. 2000;183(6):1338–46. https://doi.org/10.1067/mob.2000.111251.

    Article  CAS  PubMed  Google Scholar 

  39. Lagasse J. How artificial intelligence can be used to reduce costs and improve outcomes in total joint replacement surgery. https://www.healthcarefinancenews.com/news/how-artificial-intelligence-can-be-used-reduce-costs-and-improve-outcomes-total-joint

  40. Lomis K, Jeffries P, Palatta A, et al. Artificial intelligence for health professions educators. NAM Perspect. 2021;2021. https://doi.org/10.31478/202109a

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y. Daykan: project development, data collection, manuscript writing; B.A. O'Reilly: manuscript editing.

Corresponding author

Correspondence to Yair Daykan.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daykan, Y., O’Reilly, B.A. The role of artificial intelligence in the future of urogynecology. Int Urogynecol J 34, 1663–1666 (2023). https://doi.org/10.1007/s00192-023-05612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-023-05612-3

Keywords

Navigation