Skip to main content
Log in

Underlying topography extraction over forest areas from multi-baseline PolInSAR data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In this paper, the digital elevation model (DEM) for a forest area is extracted from multi-baseline (MB) polarimetric interferometric synthetic aperture radar (PolInSAR) data. On the basis of the random-volume-over-ground (RVoG) model, the weighted complex least-squares adjustment (WCLSA) method is proposed for the ground phase estimation, so that the MB PolInSAR observations can be constrained by a generalized observation function and the observation contribution to the solution can be adjusted by a weighting strategy. A baseline length weighting strategy is then adopted to syncretize the DEMs estimated with the ground phases. The results of the simulated experiment undertaken in this study demonstrate that the WCLSA method is sensitive to the number of redundant observations and can adjust the contributions of the different observations. We also applied the WCLSA method to E-SAR L- and P-band MB PolInSAR data from the Krycklan River catchment in Northern Sweden. The results show that the two extracted DEMs are in close agreement with the Light Detection and Ranging (Lidar) DEM, with root-mean-square errors of 3.54 and 3.16 m. The DEM vertical error is correlated with the terrain slope and ground-cover condition, but not with the forest height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baugh CA, Bates PD, Schumann G, Trigg MA (2013) SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resour Res 49(9):5276–5289

    Article  Google Scholar 

  • Balzter H, Baade J, Rogers K (2016) Validation of the TanDEM-X intermediate digital elevation model with airborne LiDAR and differential GNSS in Kruger National Park. IEEE Geosci Remote Sens Lett 13(2):277–281

    Article  Google Scholar 

  • Ballester-Berman JD, Lopez-Sanchez JM (2010) Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 48(1):466–479

    Article  Google Scholar 

  • Ballester-Berman JD, Vicente-Guijalba F, Lopez-Sanchez JM (2015) A simple RVoG test for PolInSAR data. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(3):1028–1040

    Article  Google Scholar 

  • Chen C, Zebker H (2001) Two-dimensional phase unwrapping with use of statistical models for cost function in nonlinear optimization. J Opt Soc Am A 18(2):338–351

    Article  Google Scholar 

  • Cloude SR, Papathanassiou KP (1998) Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 36(5):1551–1565

    Article  Google Scholar 

  • Cloude SR, Papathanassiou KP (2003) Three-stage inversion process for polarimetric SAR interferometry. Proc Inst Elect Eng Radar Sonar Navigat 150(3):125–134

    Article  Google Scholar 

  • Cloude SR (2009) Polarisation: applications in remote sensing. Oxford University Press, London

    Book  Google Scholar 

  • Cui XZ, Yu ZC, Tao BZ, Liu DJ, Yu ZL, Sun HY, Wang XZ (2009) Generalized surveying adjustment, 2nd edn. The Wuhan University Press, Wuhan

    Google Scholar 

  • Clutter M, Dobson C, Pierce L, Kellndorfer J, Vona J, Hunsaker C, Fites J, Walker W (2004) Vegetation height estimation from shuttle radar topography mission and national elevation datasets. Remote Sens Environ 93(3):339–358

    Article  Google Scholar 

  • DLR Microwaves and Radar Institute, Swedish Defense Research Agency (2009) BIOSAR 2008: Data acquisition and processing report. https://earth.esa.int/c/document_library/get_file?folderId=21020&name=DLFE-903.pdf Accessed 6 Apr 2016

  • Ferretti A, Prati C, Rocca F (1999) Multibaseline InSAR DEM reconstruction: the wavelet approach. IEEE Trans Geosci Remote Sens 37(2):705–715

    Article  Google Scholar 

  • Fu HQ, Wang CC, Zhu JJ, Xie QH, Zhao R (2015) Inversion of forest height from PolInSAR using complex least squares adjustment method. Sci China Earth Sci 58(6):1018–1031

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. https://doi.org/10.1029/2005RG000183

  • Garestier F, Dubois-Fernandez PC, Papathanassiou KP (2008a) Pine forest height inversion using single-pass X-band PolInSAR data. IEEE Trans Geosci Remote Sens 46(1):56–68

    Article  Google Scholar 

  • Garestier F, Dubois-Fernandez P, Champion I (2008b) Forest height inversion using high resolution P-band Pol-InSAR data. IEEE Trans Geosci Remote Sens 46(11):3544–3559

    Article  Google Scholar 

  • Gui Q, Zhang J (1998) Robust biased estimation and its applications in geodetic adjustments. J Geod 72:430–435

    Article  Google Scholar 

  • Hajnsek I, Kugler F, Lee SK, Papathanassiou KP (2009) Tropical-forest-parameter estimation by means of Pol-InSAR: the INDREX-II campaign. IEEE Trans Geosci Remote Sens 47(2):481–492

    Article  Google Scholar 

  • Huber M, Gruber A, Wendleder A, Wessel B, Roth A, Schmitt A (2012) The global Tandem-X DEM: production status and first validation results. In: ISPRS Congress, Melbourne, Australia 25 Aug–01 Sep 2012

  • Iribe K, Lopez-Martinez C, Papathanassiou KP, Hajnsek I (2008) Estimation of ground topography in forested terrain by means of Pol-InSAR. In: Proceeding of IGARSS 2008, Boston, Massachusetts, USA

  • Lee SK, Kugler F, Papathanassiou KP, Hajnsek I (2011) Multibaseline polarimetric SAR interferometry forest height inversion approaches. In proceeding of ESA POLINSAR Workshop, Frascati, Italy

  • Kugler F, Schulze D, Hajnsek I, Pretzsch H, Papathanassiou KP (2014) TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Trans Geosci Remote Sens 52(10):6404–6422

    Article  Google Scholar 

  • Li ZW, Ding XL, Huang C, Zhu JJ, Chen YL (2008) Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J Photogramm 63(6):621–634

    Article  Google Scholar 

  • Liao MS, Jiang HJ, Wang Y, Wang T, Zhang L (2014) Improved topographic mapping through high-resolution SAR interferometry with atmospheric effect removal. J Geod 88:587–599

    Article  Google Scholar 

  • Lopez-Sanchez JM, Ballester-Berman JD, Marquez-Moreno Y (2007) Model limitations and parameter estimation methods for agricultural applications of polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3481–3493

    Article  Google Scholar 

  • Lopez-Martinez C, Papathanassiou KP (2013) Cancellation of scattering mechanisms in PolInSAR: application to underlying topography estimation. IEEE Trans Geosci Remote Sens 51(2):953–965

    Article  Google Scholar 

  • Lavalle M, Simard M, Hensely S (2012) A temporal decorrelation model for polarimetric radar interferometers. IEEE Trans Geosci Remote Sens 50(7):2880–2888

    Article  Google Scholar 

  • Lavalle M, Khun K (2014) Three-baseline InSAR estimation of forest height. IEEE Geosci Remote Sens Lett 11(10):1737–1741

    Article  Google Scholar 

  • Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou KP, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115(11):2850–2860

    Article  Google Scholar 

  • Miller KS (1973) Complex linear least squares. Siam Rev 15(14):706–725

    Article  Google Scholar 

  • Mercer B, Zhang Q, Schwaebisch M, Denbina M, Cloude SR (2009) Forest height and ground topography at L-band from an experimental single-pass airborne Pol-InSAR system. In: Proceeding of PolInSAR Workshop, Frascati, Italy

  • Neumann M, Ferro-Famil L, Reigber A (2010) Estimation of forest structure, ground and canopy layer characteristics from multi-baseline polarimetric interferometric SAR data. IEEE Trans Geosci Remote Sens 48(3):1086–1104

  • Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39(11):2352–2363

    Article  Google Scholar 

  • Reigber A, Moreira A (2000) First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 38(5):2142–2152

    Article  Google Scholar 

  • Reigber A, Prats P, Mallorqui JJ (2006) Refined estimation of time-varying baseline errors in airborne SAR interferometry. IEEE Geosci Remote Sens Lett 3(1):145–149

    Article  Google Scholar 

  • Small D (1998) Generation of digital elevation models through spaceborne SAR interferometry. PhD dissertation, University of Zurich, Switzerland

  • Sun Q, Zhang L, Ding XL, Hu J, Li ZW, Zhu JJ (2015) Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens Environ. https://doi.org/10.1016/j.rse.2014.09.029

  • Treuhaft RN, Madsen SN, Moghaddam M, Zyl JJ (1996) Vegetation characteristics and underlying topography from interferometric data. Radio Sci 31(6):1449–1495

    Article  Google Scholar 

  • Treuhaft RN, Siqueira PR (2000) Vertical structure of vegetated land surfaces from interferometric and polarimetric data. Radio Sci 35(1):141–177

    Article  Google Scholar 

  • Tebaldini S, Gatti G, Mariotti d’Alessandro M, Rocca F (2009) Generation of digital terrain models from multiple SAR airborne surveys over forested areas. In: Proceeding of fringe 2009 workshop, Frascati, Italy, pp 1–7

  • Tebaldini S (2009) Multi-baseline SAR imaging: models and algorithms. PhD dissertation, Politechico Di Milano, Italy

  • Tebaldini S (2010) Single and multipolarimetric SAR tomography of forested areas: a parametric approach. IEEE Trans Geosci Remote Sens 48(5):2375–2387

    Article  Google Scholar 

  • Tebaldini S, Rocca F (2012) Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-bands. IEEE Trans Geosci Remote Sens 50(1):232–246

    Article  Google Scholar 

  • Tabb M., Orrey J, Flynn T (2002) Phase Diversity: an optimal decomposition for vegetation parameter estimation using polarimetric SAR interferometry. In: 4th European conference on synthetic aperture radar, Munich, Germany, pp 721–724

  • Tang SQ, Tang QG, Huang WT (2010) Complex variables functions. China Machine Press, Beijing

    Google Scholar 

  • Wei L, Balz T, Liao M, Zhang L (2014) TerraSAR-X stripmap data interpretation of complex urban scenarios with 3D SAR tomography. J Sensors. https://doi.org/10.1155/2014/386753

    Google Scholar 

  • Xu B, Li ZW, Wang QJ, Jiang M, Zhu JJ, Ding XL (2014) A refined strategy for removing composite errors of SAR interferogram. IEEE Geosci Remote Sens Lett 11(1):143–147

    Article  Google Scholar 

  • Wang CC, Wang L, Fu HQ, Xie QH, Zhu JJ (2016) The impact of forest density on forest height inversion modeling from polarimetric InSAR data. Remote Sens. https://doi.org/10.3390/rs8040291

    Google Scholar 

  • Zhang G, Fei WB, Li Z, Liu ZY, Li DR (2011) Evaluation of the RPC model as a replacement for the spaceborne InSAR phase equation. Photogramm Rec 26(136):325–338

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41531068, 41371335, and 41274010) and the Hunan Provincial Innovation Foundation for Postgraduate (No. 150140004). This paper was also supported by the PA-SB ESA EO Project Campaign (ID. 14655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhu, J., Wang, C. et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data. J Geod 92, 727–741 (2018). https://doi.org/10.1007/s00190-017-1091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1091-1

Keywords

Navigation