Skip to main content
Log in

Gravity gradient modeling using gravity and DEM

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A model of the gravity gradient tensor at aircraft altitude is developed from the combination of ground gravity anomaly data and a digital elevation model. The gravity data are processed according to various operational solutions to the boundary-value problem (numerical integration of Stokes’ integral, radial-basis splines, and least-squares collocation). The terrain elevation data are used to reduce free-air anomalies to the geoid and to compute a corresponding indirect effect on the gradients at altitude. We compare the various modeled gradients to airborne gradiometric data and find differences of the order of 10–20 E (SD) for all gradient tensor elements. Our analysis of these differences leads to a conclusion that their source may be primarily measurement error in these particular gradient data. We have thus demonstrated the procedures and the utility of combining ground gravity and elevation data to validate airborne gradiometer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal BNP, Lal T (1972) A generalized method of computing second derivative of gravity field. Geophys Prospect 20: 385–394

    Article  Google Scholar 

  • Asten MW (2000) A technical review of the FALCON AIRBORNE gravity gradiometer: technical consultant’s report, sect. 6. Gravity Capital Limited, Melbourne

  • Bell Geospace B (2004) Final report of acquisition and processing on Air-FTG survey in Parkfield earthquake experiment area: technical report. Rice University, Houston

  • Chinnery MA (1961) Terrain corrections for airborne gravity gradient measurements. Geophysics 26(4): 480–489

    Article  Google Scholar 

  • Csanyi N, Toth C, Grejner-Brzezinska D, Ray J (2005) Improving LiDAR data accuracy using LiDAR- specific ground targets: ASPRS annual conference, Baltimore, MD, 7–11 March, CD-ROM

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling: report 355. Department of Geodetic Science and Surveying, The Ohio State University, Columbus

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere, with applications in geomathematics. Clarendon Press, Oxford

    Google Scholar 

  • Gunn PJ (1975) Linear transformations of gravity and magnetic fields. Geophys Prospect 23: 300–312

    Article  Google Scholar 

  • Heck B (2003) On Helmert’s methods of condensation. J Geod 77(3–4): 155–170

    Article  Google Scholar 

  • Hein G (1977) Die Berechnung von anomalen vertikalen Schweregradienten hoher Präzision. Report 234, Series C. Deutsche Geodätishce Kommission, Munich (in German)

  • Heiskanen W, Moritz H (1967) Physical geodesy. W. H. Freeman and Co., San Francisco

    Google Scholar 

  • Heller WG (1977) Error models for prototype moving-base gravity gradiometers. Report AFGL-TR-77–0131. The Analytic Sciences Corporation for Air Force Geophysics Laboratory, Hanscom AFB, MA

  • Isles D, Moody I (2004) Examples of Falcon™ data from diamond exploration projects in Northern Australia. In: Lane RJL (ed) Airborne Gravity 2004—abstracts from the ASEG-PESA airborne gravity 2004 workshop: Geoscience Australia Record 2004/18, pp 121–124

  • Jekeli C (1988) The Gravity Gradiometer Survey System (GGSS): EOS, vol 69. Transactions of the American Geophysical Union, 105ff

  • Jekeli C (2005) Spline representations of functions on a sphere for geopotential modeling: report 475. Geodetic Science, Ohio State University, Columbus. http://www.ceegs.ohio-state.edu/gsreports/reports/report_475.pdf

  • Jekeli C, Serpas JG (2003) Review and numerical assessment of the direct topographical reduction in geoid determination. J Geod 77: 226–239 doi:10.1007/s00190-003-0320-y

    Article  Google Scholar 

  • Jekeli C, Zhu L (2006) Comparison of methods to model the gravitational gradients, from topographic data bases. Geophys J Int 166: 999–1014

    Article  Google Scholar 

  • Klees R, Lehmann R (1998) Calculation of strongly singular and hypersingular surface integrals. J Geod 72(9): 530–546

    Article  Google Scholar 

  • Lee JB (2001) Falcon gravity gradiometer technology. Explor Geophys 32: 247–250

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson, RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96: NASA Technical Paper NASA/TP-1998–206861. Goddard Space Flight Center, Greenbelt

  • Martinec Z (1988) Boundary-value problems for gravimetric determination of a precise geoid. Lecture notes in earth sciences, vol 73. Springer, Berlin

  • Matthews R (2002) Mobile Gravity Gradiometer. Ph.D. Thesis, Department of Physics, University of Western Australia

  • McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA (2002) Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65. doi:10.1103/PhysRevA.65.033608

  • Mickus KL, Hinojosa JH (2001) The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. J Appl Geophys 46: 159–174

    Article  Google Scholar 

  • Moritz H (1978) Least-square collocation. Rev Geophys 16(3): 421–430

    Article  Google Scholar 

  • Petzold B, Reiss P, Stössel W (1999) Laser scanning—surveying and mapping agencies are using new technique for the derivation of digital terrain models. J Photogramm Remote Sens 54: 95–104

    Article  Google Scholar 

  • Schreiner M (1997) Locally supported kernel for spherical spline interpolation. J Approx Theory 89(2): 172–194

    Article  Google Scholar 

  • Sjöberg LE (2001) Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one. J Geod 75(5/6): 283–290

    Google Scholar 

  • Tóth G, Völgyesi L (2005) Local gravity field modeling using surface gravity gradient measurements. Presented at Dynamic Planet 2005, IAG Scientific Assembly, Cairns, Australia, 22–26 August 2005

  • Tryggvason B, Brian M, Barry F (2004) A high resolution airborne gravimeter and airborne gravity gradiometer. In: Lane RJL (ed) Airborne gravity 2004 Abstracts from the ASEG-PESA airborne gravity 2004 workshop: Geoscience Australia Record 2004/18, pp 41–44

  • Tscherning CC, Forsberg R, Knudsen P (1992) The GRAVSOFT package for geoid determination: proceedings first workshop on the European Geoid, Prague

  • Tsoulis D (2003) Terrain modeling in forward gravimetric problems: a case study on local terrain effects. J Appl Geophys 54: 145–160

    Article  Google Scholar 

  • Tziavos IN, Sideris MG, Forsberg R, Schwarz KP (1988) The effect of the terrain on airborne gravity and gradiometry. J Geophys Res 93: 9173–9186

    Article  Google Scholar 

  • USGS 2006 Shuttle Radar Topography Mission (SRTM). http://eros.usgs.gov/products/elevation.html

  • van Kann F (2004) Requirements and general principles of airborne gravity gradiometers for mineral exploration: In: Lane RJL (ed) Airborne Gravity 2004 Abstracts from the ASEG-PESA airborne gravity 2004 workshop: geoscience Australia record 2004/18, pp 1–5

  • Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135: 505–514

    Article  Google Scholar 

  • Zhu L (2007) Gravity gradient modeling with gravity and DEM, Report 483. Geodetic Science and Surveying, The Ohio State University, Columbus

  • Zhu L, Jekeli C (2007a) Combining gravity and topographic data for local gradient modeling: In: Tregoning P, Rizos C (eds) Dynamic planet, monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG symposium, Cairns, Australia, 22–26 August 2005. Springer, Berlin, pp 288–295

  • Zhu L, Jekeli C (2007b) Comparing methods to model the local gravity gradients from gravity anomalies. In: Proceedings of the symposium of the international gravity field service, 28 August – 1 September 2006, Istanbul, Turkey, Harita Dergisi (J Map), vol 18. General Command of Mapping, Ankara, Turkey, pp 289–294

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jekeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Jekeli, C. Gravity gradient modeling using gravity and DEM. J Geod 83, 557–567 (2009). https://doi.org/10.1007/s00190-008-0273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0273-2

Keywords

Navigation