Skip to main content
Log in

Highest posterior mass prediction intervals for binomial and poisson distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The problems of constructing prediction intervals (PIs) for the binomial and Poisson distributions are considered. New highest posterior mass (HPM) PIs based on fiducial approach are proposed. Other fiducial PIs, an exact PI and approximate PIs are reviewed and compared with the HPM-PIs. Exact coverage studies and expected widths of prediction intervals show that the new prediction intervals are less conservative than other fiducial PIs and comparable with the approximate one based on the joint sampling approach for the binomial case. For the Poisson case, the HPM-PIs are better than the other PIs in terms of coverage probabilities and precision. The methods are illustrated using some practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agresti A, Coull BA (1988) Approximate is better than “exact” for interval estimation of binomial proportion. Am Stat 52:119–125

    MathSciNet  Google Scholar 

  • Bain LJ, Patel JK (1993) Prediction intervals based on partial observations for some discrete distributions. IEEE Trans Reliab 42:459–463

    Article  MATH  Google Scholar 

  • Brown LD, Cai T, Das Gupta A (2001) Interval estimation for a binomial proportion (with discussion). Stat Sci 16:101–133

    Google Scholar 

  • Cai T (2005) One-sided confidence intervals in discrete distributions. J Stat Plan Inference 131:63–88

    Article  MathSciNet  MATH  Google Scholar 

  • Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413

    Article  MATH  Google Scholar 

  • Cox DR (1953) Some simple approximate tests for Poisson variates. Biometrika 40:354–360

    Article  MathSciNet  MATH  Google Scholar 

  • Dawid AP, Stone M (1982) The functional-model basis of fiducial inference. Ann Stat 10:1054–1074

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B (1998) R. A. Fisher in the 21st century. Stat Sci 13:95–114

    Article  MathSciNet  MATH  Google Scholar 

  • Faulkenberry GD (1973) A method of obtaining prediction intervals. J Am Stat Assoc 68:433–435

    Article  MATH  Google Scholar 

  • Fisher RA (1930) Inverse probability. In: Proceedings of the Cambridge philosophical society, London, vol xxvi, pp 528–535

  • Fisher RA (1935) The fiducial argument in statistical inference. Ann Eugen VI:91–98

    Google Scholar 

  • Hahn GJ, Meeker WQ (1991) Statistical intervals: a guide to practitioners. Wiley, New York

    Book  MATH  Google Scholar 

  • Hannig J (2009) On generalized fiducial inference. Stat Sin 19:491–544

    MathSciNet  MATH  Google Scholar 

  • Hannig J, Iyer H, Lai RCS, Lee T (2016) Generalized fiducial inference: a review and new results. J Am Stat Assoc 111:1346–1361

    Article  MathSciNet  Google Scholar 

  • Krishnamoorthy K, Lee M (2010) Inference for functions of parameters in discrete distributions based on fiducial approach: binomial and Poisson cases. J Stat Plan Inference 140:1182–1192

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnamoorthy K, Peng J (2011) Improved closed-form prediction intervals for binomial and Poisson distributions. J Stat Plan Inference 141:1709–1718

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnamoorthy K (2015) Handbook of statistical distributions with applications. Chapman & Hall/CRC, Boca Raton, FL

    Book  MATH  Google Scholar 

  • Krishnamoorthy K, Lee M, Zhang D (2017) Closed-form fiducial confidence intervals for some functions of independent binomial parameters with comparisons. Stat Methods Med Res 26:43–63

    Article  MathSciNet  Google Scholar 

  • Montgomery DC (1996) Introduction to statistical quality control Hoboken. Wiley, New York

    Google Scholar 

  • Nelson W (1982) Applied life data analysis. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Stevens WL (1950) Fiducial limits of the parameter of a discontinuous distribution. Biometrika 37:117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Thatcher AR (1964) Relationships between Bayesian and confidence limits for prediction. J R Stat Soc Ser. B 26:176–192

    MathSciNet  MATH  Google Scholar 

  • Thulin M (2014) The cost of using exact confidence intervals for a binomial proportion. Electron J Stat 8:817–840

    Article  MathSciNet  MATH  Google Scholar 

  • Thulin M, Zwanzig S (2017) Exact confidence intervals and hypothesis tests for parameters of discrete distributions. Bernoulli 23:479–502

    Article  MathSciNet  MATH  Google Scholar 

  • Tsui KW, Weerahandi S (1989) Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J Am Stat Assoc 84:602–607

    MathSciNet  Google Scholar 

  • Vohr BR, Carty LM, Moore PE, Letourneau K (1998) The Rhode island hearing assessment program: experience with statewide hearing screening (1993–1996). J Pediatr 133:353–357

    Article  Google Scholar 

  • Wang H (2008) Coverage probability of Prediction intervals for discrete random variables. Comput Stat Data Anal 53:17–26

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H (2010) Closed form prediction intervals applied for disease counts. Am Stat 64:250–256

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Tsung F (2009) Tolerance intervals with improved coverage probabilities for binomial and Poisson variables. Technometrics 51:25–33

    Article  MathSciNet  Google Scholar 

  • Wang CM, Hannig J, Iyer HK (2012) Fiducial prediction intervals. J Stat Plan Inference 142:1980–1990

    Article  MathSciNet  MATH  Google Scholar 

  • Weerahandi S (1993) Generalized confidence intervals. J Am Stat Assoc 88:899–905

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two reviewers and the editor for providing valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishnamoorthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 1 KB)

Appendices

Appendix A

We shall now provide an exact expression for the probability mass function of \(Y^*\) defined in (8). Note that

$$\begin{aligned} P(Y^* = y)= & {} E_UP(Y^*=y|W)\\= & {} E\left\{ {m\atopwithdelims ()y}W^y(1-W)^{m-y} \right\} \\= & {} {m\atopwithdelims ()y}\frac{1}{B(x+.5,n-x+.5)}\int _0^1 w^{y+x-.5}(1-w)^{n+m-y-x-.5}dw\\= & {} {m\atopwithdelims ()y}\frac{B(y+x+.5,n+m-y-x+.5)}{B(x+.5,n-x+.5)}\\= & {} \frac{\Gamma (x+y+.5)}{\Gamma (y+1)\Gamma (x+.5)} \frac{\Gamma (m+n-x-y+.5)}{\Gamma (n-x+.5)\Gamma (m-y+1)}\bigg /{m+n \atopwithdelims ()m}. \end{aligned}$$

Appendix B

We shall now provide an exact expression for the probability mass function of \(Y^*\) defined in (14) for predicting a future observation from a Poisson distribution. We first note that \(\chi ^2_a/b\) is distributed as a gamma random variable with shape parameter a / 2 and the scale parameter 2 / b. Letting \(a=2x+1\) and \(b=2n\), we see that

$$\begin{aligned} P(Y^* = y)= & {} E_WP(Y^*=y|W)\\= & {} \frac{(b/2)^{\frac{a}{2}}}{\Gamma \left( a/2\right) }\int _0^\infty \frac{e^{-mw}(mw)^y}{y!} e^{-bw/2}w^{a/2-1}dw \\= & {} \frac{m^y(b/2)^{\frac{a}{2}}}{y!\Gamma \left( \frac{a}{2}\right) }\int _0^\infty e^{-w(m+b/2)}w^{a/2+y-1}dw \\= & {} \frac{m^y(b/2)^{\frac{a}{2}}\Gamma (a/2+y)}{y!\Gamma (a/2)(m+b/2)^{a/2+y}}\\= & {} \frac{\Gamma (x+y+.5)}{\Gamma (x+.5)\Gamma (y+1)}\left( \frac{m}{m+n}\right) ^y \left( \frac{n}{m+n}\right) ^{x+.5}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, K., Lv, S. Highest posterior mass prediction intervals for binomial and poisson distributions. Metrika 81, 775–796 (2018). https://doi.org/10.1007/s00184-018-0658-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0658-z

Keywords

Navigation