Skip to main content
Log in

Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In the context of nuclear safety experiments, we consider curves issued from acoustic emission. The aim of their analysis is the forecast of the physical phenomena associated with the behavior of the nuclear fuel. In order to cope with the complexity of the signals and the diversity of the potential source mechanisms, we experiment innovative clustering strategies which creates new curves, the envelope and the spectrum, from each raw hits, and combine spline smoothing methods with nonparametric functional and dimension reduction methods. The application of these strategies prove that in nuclear context, adapted functional methods are effective for data clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abraham C, Cornillon PA, Matzner-Løber E, Molinari N (2003) Unsupervised curve clustering using b-splines. Scand J Stat 30(3):581–595

    Article  MathSciNet  MATH  Google Scholar 

  • Aguilera AM, Escabias M, Valderrama MJ (2006) Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput Stat Data Anal 50(8):1905–1924

    Article  MathSciNet  MATH  Google Scholar 

  • Ai Q, Liu C, Chen X, He P, Wang Y (2010) Acoustic emission of fatigue crack in pressure pipe under cyclic pressure. Nucl Eng Des 240(10):3616–3620

    Article  Google Scholar 

  • Anastassopoulos AA, Philippidis TP (1995) Clustering methodology for the evaluation of acoustic emission from composites. J Acoust Emiss 13(1–2):11–22

    Google Scholar 

  • Boudou A, Viguier-Pla S (2017) Commutator of projectors and of unitary operators. In: Functional statistics and related fields. Springer, pp 67–75

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45(1):11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Chiou JM, Müller HG, Wang JL (2004) Functional response models. Stat Sin 14:675–693

    MathSciNet  MATH  Google Scholar 

  • Cuesta-Albertos JA, Febrero-Bande M (2010) A simple multiway anova for functional data. Test 19(3):537–557

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference 147:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Desgraupes B (2013) Clustering indices, vol 1. University of Paris Ouest-Lab Modal’X, Paris, p 34

    Google Scholar 

  • Favretto-Cristini N, Hégron L, Sornay P (2016) Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique. Ultrasonics 67:178–189

    Article  Google Scholar 

  • Febrero-Bande M, González-Manteiga W, de la Fuente MO (2017) Variable selection in functional additive regression models. In: Functional statistics and related fields. Springer, pp 113–122

  • Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approach. Comput Stat Data Anal 44(1):161–173

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Berlin

    MATH  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer Series in Statistics, vol 1. Springer, Berlin

    MATH  Google Scholar 

  • Gautschi G (2002) Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Springer, Berlin

    Book  Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 46:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Huckemann SF, Eltzner B (2017) Essentials of backward nested descriptors inference. In: Functional statistics and related fields. Springer, pp 137–144

  • Ieva F, Paganoni AM, Pigoli D, Vitelli V (2013) Multivariate functional clustering for the morphological analysis of electrocardiograph curves. J R Stat Soc Ser C (Appl Stat) 62(3):401–418

    Article  MathSciNet  Google Scholar 

  • Jacques J, Preda C (2014) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255

    Article  MathSciNet  Google Scholar 

  • Jernkvist LO, Massih AR (2010) Nuclear fuel behavior under reactivity-initiated accident (ria) conditions. Technical report, Nuclear Energy Agency

  • Jiang Q, Meintanis SG, Zhu L (2017) Two-sample tests for multivariate functional data. In: Functional statistics and related fields. Springer, pp 145–154

  • Keyvan S, Nagaraj J (1996) Pattern recognition of acoustic signatures using art2: a neural network. J Acoust Emiss 14(2):97–102

    Google Scholar 

  • Lila E, Aston JA, Sangalli LM (2017) Functional data analysis of neuroimaging signals associated with cerebral activity in the brain cortex. In: Functional statistics and related fields. Springer, pp 169–172

  • Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip Rev Data Min Knowl Discov. https://doi.org/10.1002/widm.1219

  • Pantera L, Traore OI (2015) Reproducible data processing research for the CABRI RIA experiments acoustic emission signal analysis. In: 4th International conference on advancements in nuclear instrumentation measurement methods and their applications (ANIMMA). IEEE, pp 1–8

  • Preda C, Saporta G, Lévéder C (2007) Pls classification of functional data. Comput Stat 22(2):223–235

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Ramsay J, Silverman BW (2005) Functional data analysis. Springer, Berlin

    MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies. Springer, New York

    Book  MATH  Google Scholar 

  • Roget J (1988) Essais non destructifs: L’émission acoustique: Mise en œuvre et applications. CETIM, AFNOR

  • Rossi F, Conan-Guez B, El Golli, A (2004) Clustering functional data with the som algorithm. In: ESANN, pp 305–312

  • Rossi F, Villa N (2006) Support vector machine for functional data classification. Neurocomputing 69(7):730–742

    Article  Google Scholar 

  • Rudling P, Jernkvist LO, Garzarolli F, Adamson R, Mahmood T, Strasser A, Patterson C (2016) Nuclear fuel behaviour under ria conditions. Advanced Nuclear Technology International, Mölnlycke

    Google Scholar 

  • Scrucca L (2004) qcc: an r package for quality control charting and statistical process control. R News 4(1):11–17

    MathSciNet  Google Scholar 

  • Signal Developers (2014) R Package signal: Signal processing. http://r-forge.r-project.org/projects/signal/

  • Sueur J, Aubin T, Simonis C (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226

    Article  Google Scholar 

  • Traore OI, Cristini P, Favretto-Cristini N, Pantera L, Vieu P, Viguier-Pla S (2017a) Contribution of functional approach to the classification and the identification of acoustic emission source mechanisms. In: Functional statistics and related fields. Springer, pp 251–259

  • Traore OI, Favretto-Cristini N, Pantera L, Cristini P, Viguier-Pla S, Vieu P (2017b) Which methods and strategies to cope with noise complexity for an effective interpretation of acoustic emission signals in noisy nuclear environment? Acta Acust United Acust 103(6):903–916

    Article  Google Scholar 

  • Traore OI, Pantera L, Favretto-Cristini N, Cristini P, Viguier-Pla S, Vieu P (2017c) Structure analysis and denoising using singular spectrum analysis: application to acoustic emission signals from nuclear safety experiments. Measurement 104:78–88

    Article  Google Scholar 

  • Traore OI, Favretto-Cristini N, Cristini P, Pantera L, Viguier-Pla S (2018) Impact of the test device on acoustic emission signals from nuclear safety experiments: contribution of wave propagation modeling to signal processing. IEEE Trans Nucl Sci 65(9):2479–2489

    Article  Google Scholar 

  • Ullah S, Finch CF (2013) Applications of functional data analysis: a systematic review. BMC Med Res Methodol 13(1):43

    Article  Google Scholar 

  • Walders F, Liebl D (2017) Parameter regimes in partially functional linear regression for panel data. In: Functional statistics and related fields. Springer, pp 261–270

  • Wotzka D (2014) Mathematical model and regression analysis of acoustic emission signals generated by partial discharges. Appl Comput Math 3(5):225–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Viguier-Pla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traore, O.I., Cristini, P., Favretto-Cristini, N. et al. Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches. Comput Stat 34, 631–652 (2019). https://doi.org/10.1007/s00180-018-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-00864-w

Keywords

Navigation