Skip to main content
Log in

A novel acc-jerk-limited NURBS interpolation enhanced with an optimized S-shaped quintic feedrate scheduling scheme

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a new adaptive acc-jerk-limited nonuniform rational B-spline (NURBS) interpolation method based on an optimized S-shaped C2 quintic feedrate planning scheme. At first, the modified quintic feedrate profile for each sharp corner during the acceleration/deceleration (acc/dec) stage is constructed. To this end, two feedrate slope correction coefficients (FSCC) are introduced for zero end point acceleration and jerk conception in acc/dec stage of each sharp corner. Also, a new algorithm is recommended to compute the acc/dec stage traverse time with respect to the deceleration starting time in this paper. Then, the modified quintic feedrate scheduling scheme equipped with the FSCC is improved for the tool path containing several sharp corners. The FSCC and the deceleration starting times corresponding to all sharp corners are evaluated using an optimization method such that the total machining time to be minimized. In this paper, the pattern search algorithm equipped with the nonlinear constraint function including the acceleration and jerk limitations Matlab code is used for obtaining the optimized parameters to accomplish the acc-jerk-limited feedrate scheduling scheme along the tool path. The proposed interpolation method is performed for several case studies and compared with the previously published methods to evaluate the effectiveness of the designed adaptive acc-jerk-limited feedrate scheduling scheme. The simulation results demonstrate that the proposed interpolation algorithm is capable for providing a smooth feedrate transition for all stages of motion along the tool path and yields satisfactory performances such as total machining time and the interpolation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erkorkmaz K, Altintas Y (2005) Quintic spline interpolation with minimal feed fluctuation. ASME J Manuf Sci Eng 127(2):339–349

    Article  Google Scholar 

  2. Wang FC, Wright PK (1998) Open architecture controllers for machine tools, part 2: a real time quintic spline interpolator. ASME J Manuf Sci Eng 120(2):425–432

    Article  Google Scholar 

  3. Sekar M, Narayanan VN, Yang SH (2008) Design of jerk bounded feedrate with ripple effect for adaptive nurbs interpolator. Int J Adv Manuf Technol 37(5–6):545–552

    Article  Google Scholar 

  4. Park J, Nam S, Yang M (2005) Development of a real-time trajectory generator for NURBS interpolation based on the two-stage interpolation method. Int J Adv Manuf Technol 26(4):359–365

    Article  Google Scholar 

  5. Koren Y, Lo CC, Shpitalni M (1993) CNC interpolators: algorithms and analysis. ASME PED J Manuf Sci Eng 64:83–92

    Google Scholar 

  6. Shipitalni M, Koren Y, Lo CC (1994) Real- time curve interpolators. Comput Aided Des 26(11):832–838

    Article  Google Scholar 

  7. Yang DCH, Kong T (1994) Parametric interpolator versus linear interpolator for precision CNC machining. Comput Aided Des 26(3):225–234

    Article  MATH  MathSciNet  Google Scholar 

  8. Yeh SS, Hsu PL (1999) The speed-controlled interpolator formachining parametric curves. Comput Aided Des 31:349–357

    Article  MATH  Google Scholar 

  9. Tikhon M, Ko TJ, Lee SH, Kim HS (2004) NURBS interpolator for constant material removal rate in open NC machine tools. Int J Mach Tools Manuf 44:237–245

    Article  Google Scholar 

  10. Cheng CW, Tsai MC (2004) Real-time variable feedrate NURBS curve interpolator for CNC machining. Int J Adv Manuf Technol 23(11–12):865–873

    Google Scholar 

  11. Su KH, Cheng MY (2008) Contouring accuracy improvement using cross-coupled control and position error compensator. Int J Mach Tools Manuf 48:1444–1453

    Article  Google Scholar 

  12. Cheng MY, Su KH, Wang SF (2009) Contour error reduction for free-form contour following tasks of biaxial motion control systems. Robot Comput Integr Manuf 25(2):323–333

    Article  Google Scholar 

  13. Farouki RT, Tsai YF (2001) Exact Taylor series coefficients for variable-feedrate CNC curve interpolators. Comput Aided Des 33:155–165

    Article  Google Scholar 

  14. Tsai MC, Cheng CW (2003) A real-time predictor corrector interpolator for CNC machining. Trans J Manuf Sci Eng 125:449–460

    Article  Google Scholar 

  15. Zhang XT, Song Z (2012) An iterative federate optimization method for real-time NURBS interpolator. Int J Adv Manuf Technol 62:1273–1280

    Article  Google Scholar 

  16. Lei WT, Sung MP, Lin LY, Huang JJ (2007) Fast real-time NURBS path interpolation for CNC machine tools. Int J Mach Tools Manuf 47(10):1530–1541

    Article  Google Scholar 

  17. Liu J, Chen B, Liu M, Xu D, Li Y (2012) An optimization of NURBS interpolation algorithm. 10th IEEE International Conference 316–319

  18. Jeong SY, Choi YJ, Park PG (2006) Parametric interpolation using sampled data. Comput Aided Des 38:39–47

    Article  Google Scholar 

  19. Wu JC, Zhou HC, Tang XQ, Chen JH (2012) A NURBS interpolation algorithm with continuous federate. Int J Adv Manuf Technol 59:623–632

    Article  Google Scholar 

  20. Yau HT, Lin MT, Tsai MS (2006) Real-time NURBS interpolation using FPGA for high speed motion control. Comput Aided Des 38:1123–1133

    Article  Google Scholar 

  21. Yeh S, Hsu P (2002) Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput Aided Des 34:229–237

    Article  Google Scholar 

  22. Zhiming X, Jincheng C, Zhengjin F (2002) Performance evaluation of real-time interpolation algorithm for NURBS curves. Int J Adv Manuf Technol 20:270–276

    Article  Google Scholar 

  23. Baek DK, Yang SH, Ko TJ (2012) Precision NURBS interpolator based on recursive characteristics of NURBS. Int Adv Manuf Technol 65:403–410

    Article  Google Scholar 

  24. Liang H, Wang YZ, Li X (2006) Implementation of an adaptive feed speed 3D NURBS interpolation algorithm. Front Mech Eng China 4:403–408

    Article  Google Scholar 

  25. Yong T, Narayanaswami R (2003) A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Comput Aided Des 35:1249–1259

    Article  Google Scholar 

  26. Du DS, Liu YD, Yan C, Li C (2007) An accurate adaptive parametric curve interpolator for NURBS curve interpolation. Int J Mach Tools Manuf 32:999–1008

    Article  Google Scholar 

  27. Sun YW, Jia ZY, Ren F, Guo DM (2008) Adaptive feedrate scheduling for NC machining along curvilinear paths with improved kinematic and geometric properties. Int J Adv Manuf Technol 36:60–68

    Article  Google Scholar 

  28. Feng J, Li Y, Wang Y, Chen M (2010) Design of a real-time adaptive NURBS interpolator with axis acceleration limit. Int J Adv Manuf Technol 48:227–241

    Article  Google Scholar 

  29. Luo FY, Zhou YF, Yin J (2007) A universal velocity profile generation approach for high-speed machining of small line segments with look-ahead. Int J Adv Manuf Technol 35:505–518

    Article  Google Scholar 

  30. Zhang K, Yuan CM, Gao XS (2013) Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration. Int J Adv Manuf Technol 66(9):1685–1697

    Article  Google Scholar 

  31. Sun Y, Zhou J, Guo D (2013) Variable feedrate interpolation of NURBS Toolpath with geometric and kinematical constraints for five-axis CNC machining. J Syst Sci Complex 26:757–776

    Article  MATH  Google Scholar 

  32. Zhou J, Sun Y, Guo D (2014) Adaptive feedrate interpolation with multiconstraints for five-axis parametric toolpath. Int J Adv Manuf Technol 71:1873–1882

    Article  Google Scholar 

  33. Nam SH, Yang MY (2004) A study on a generalized parametric interpolator with real time jerk-limited acceleration. Comput Aided Des 36(1):27–36

    Article  Google Scholar 

  34. Lai JY, Lin KY, Tseng SJ, Ueng WD (2008) On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk. Int J Adv Manuf Technol 37(1–2):104–121

    Article  Google Scholar 

  35. Tsai MS, Nien HW, Yau HT (2008) Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery. Comput Aided Des 40:554–566

    Article  Google Scholar 

  36. Rutkowski L, Przybył A, Cpałka K (2012) Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. EEE Trans Ind Electron 59(2):1238–1247

    Article  Google Scholar 

  37. Liu X, Ahmad F, Yamazaki K, Mori M (2005) Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics. Int J Mach Tools Manuf 45(4–5):433–444

    Article  Google Scholar 

  38. Shen HY, Fu JZ, Fan YQ (2011) A new adaptive interpolation scheme of NURBS based on axis dynamics. Int J Adv Manuf Technol 56:215–221

    Article  Google Scholar 

  39. Xu RZ, Xie L, Xi LCX, Du DS (2008) Adaptive parametric interpolation scheme with limited acceleration and jerk values for NC machining. Int J Adv Manuf Technol 36:343–354

    Article  Google Scholar 

  40. Ni XY, Wang DH, Li YB (2011) Real-time NURBS curve interpolator based on section. Int J Adv Manuf Technol 54(1–4):239–249

    Article  Google Scholar 

  41. Du DS, Liu YD, Guo XG, Yamazaki KZ, Fujishima M (2010) An accurate adaptive NURBS curve interpolator with real-time flexible acceleration/deceleration control. Robot Comput Integr Manuf 26(4):273–281

    Article  Google Scholar 

  42. Wang X, Wang J, Rao Z (2010) An adaptive parametric interpolator for trajectory planning. Adv Eng Softw 41:180–187

    Article  MATH  Google Scholar 

  43. Dong HT, Chen B, Chen YP, Xie JM, Zhou ZD (2012) An accurate NURBS curve interpolation algorithm with short spline interpolation capacity. Int J Adv Manuf Technol 63:1257–1270

    Article  Google Scholar 

  44. Annoni M, Bardine A, Campanelli S, Foglia P, Prete CA (2012) A real-time configurable NURBS interpolator with bounded acceleration, jerk and chord error. Comput Aided Des 44:509–521

    Article  Google Scholar 

  45. Wang YQ, Liu H, Yu S (2012) Curvature-based real-time NURBS surface interpolator with look-ahead ACC/DEC control. Math Comput Sci 6:315–326

    Article  MathSciNet  Google Scholar 

  46. Lee AC, Lin MT, Pan YR, Lin WY (2011) The feedrate scheduling of NURBS interpolator for CNC machine tools. Comput Aided Des 43(6):612–628

    Article  Google Scholar 

  47. Tsai MS, Nien HW, Yau HT (2011) Development of integrated acceleration/deceleration look-ahead interpolation technique for multi-blocks NURBS curves. Int J Adv Manuf Technol 56:601–618

    Article  Google Scholar 

  48. Piegl L (1991) On NURBS: a survey. IEEE Comput Graph 11(1):55–71

    Article  Google Scholar 

  49. Piegl LA, Tiller W (1995) The NURBS book. Springer, New York

    MATH  Google Scholar 

  50. Yang WY, Cao W, Chung TS, Morris J (2005) Applied numerical methods using MATLAB. Wiley-Interscience, Hobokon

    Book  Google Scholar 

  51. Tsai YF, Farouki RT, Feldman B (2001) Performance analysis of CNC interpolators for time-dependent feed rates along PH curves. Comput Aided Geom Des 18(3):245–265

    Article  MATH  MathSciNet  Google Scholar 

  52. Jahanpour J, Tsai M-C, Cheng M-Y (2010) High-speed contouring control with NURBS-based C2 PH spline curves. Int J Adv Manuf Technol 49:663–674

    Article  Google Scholar 

  53. Lewis RM, Torczon V (1999) Pattern search algorithms for bound constrained minimization. SIAM J Optim 9(4):1082–1099

    Article  MATH  MathSciNet  Google Scholar 

  54. Direct Search Toolbox, MathWorks, Inc. (2006). http://www.mathworks.com

  55. Jahanpour J, Imani BM (2008) Real-time P-H curve CNC interpolators for high speed cornering. Int J Adv Manuf Technol 39(3–4):302–316

    Article  Google Scholar 

  56. Jahanpour J, Ghadirifar A (2014) The improved NURBS-based C2 PH spline curve contour following task with PDFF controller. Int J Adv Manuf Technol 70:995–1007

    Article  Google Scholar 

  57. Wang H, Zhao D (2009) Research and implementation of NURBS real-time and look-ahead interpolation algorithm. Int Conf Meas Technol Mechatron Autom ICMTMA 09:273–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Jahanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanpour, J., Alizadeh, M.R. A novel acc-jerk-limited NURBS interpolation enhanced with an optimized S-shaped quintic feedrate scheduling scheme. Int J Adv Manuf Technol 77, 1889–1905 (2015). https://doi.org/10.1007/s00170-014-6575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6575-z

Keywords

Navigation