Skip to main content

Advertisement

Log in

Skill formation, environmental pollution, and wage inequality

  • Original Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

This paper studies the effects of government-led skill formation on environmental quality and the skilled–unskilled wage gap through the three-sector general equilibrium approach. The process of skill formation is divided into two periods. In the basic model, an increase in the subsidy on skill formation can improve the environment in both periods, but may widen or narrow down the wage gap, depending on the relative capital intensities of the urban sectors, and on the environmental dependence of the rural sector. In the presence of urban unemployment, the main results of the basic model still more or less hold. This paper suggests that, although the subsidy on skill formation does not necessarily reduce wage inequality, it does serve as an effective policy to improve environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See http://english.gov.cn/policies/policy_watch/2018/03/27/content_281476090981214.htm.

  2. See http://english.gov.cn/policies/latest_releases/2018/05/08/content_281476139578158.htm.

  3. Pan and Zhou (2013) and Pi and Zhang (2017) study the case where the high-skill sector generates no pollution and the low-skill sector causes pollution, but they do not address the role of skill formation.

  4. Scholars also explore the roles of trade, technological change, and institutions in determining wage inequality (see, e.g., Acemoglu 2002; Fortin and Lemieux 1997; Marjit and Acharya 2003).

  5. Chaudhuri et al. (2018) investigate how skill formation impacts wage inequality, albeit in the absence of environmental pollution. Different from Chaudhuri et al. (2018), the environmental dependence of the rural sector plays an important role in determining wage inequality in our paper.

  6. For example, the production of agricultural goods needs clean water, fresh air, and fertile soil. However, the urban unskilled sector usually emits waste gas and toxic water. The pollutants deteriorate the environment on which the rural sector depends (see, e.g., Copeland and Taylor 1999; Pan and Zhou 2013; Pi and Zhang 2017; Tawada and Nakamura 2009). Lu et al. (2015) provide empirical evidence of how soil and water pollution impacts food safety.

  7. We can also interpret \( g\left( E \right) \) as total factor productivity. Then, \( \varepsilon \) can be regarded as the elasticity of total factor productivity with respect to E. However, interpreting \( \varepsilon \) as the environmental dependence can highlight environmental externalities imposed on the rural sector. Here, we thank an anonymous referee for pointing out another plausible interpretation on \( \varepsilon \).

  8. Since unskilled labor can be employed either in the urban unskilled sector or in the rural sector, it does not matter whether the subsidy policy discriminates against labor in one of the two sectors. Nevertheless, it is plausible that the subsidy policy on skilled formation is carried out for unskilled labor in the urban unskilled sector, which generates pollution. In addition, we may assume that the government’s subsidy on education is financed by a Pigouvian tax levied on the urban unskilled sector. Since we will see the mechanism that skill formation will raise the relative prices of inputs for the urban unskilled sector, a Pigouvian tax that increases the production cost of the urban unskilled sector will strengthen this mechanism. As a result, introducing a Pigouvian tax will not basically change the main results of this paper. Here, we thank an anonymous referee for pointing out a plausible way to internalize externalities.

  9. Here, the opportunity cost of education is \( w_{\text{U}} - s \). We assume that unskilled labor who accepts an education will certainly become skilled. This assumption is adopted by, among others, Beladi et al. (2011), Chaudhuri et al. (2018), and Pan (2014). It should be noted that Beladi et al. (2011) and Pan (2014) assume that skill formation can take effect immediately, but this paper and Chaudhuri et al. (2018) divide the process of skill formation into two periods. We use a static model in the sense that there is no saving that leads to capital accumulation continuously over time, which allows us to focus solely on the impact of skill formation.

  10. We do not consider the role of capital accumulation in order to shut down its effects on wage inequality and the environment. By doing so, we can concentrate on the role of subsidy for skill formation.

  11. The assumption that the goods market is open, whereas the capital market is closed, is widely adopted by the existing literature (e.g., Beladi et al. 2010; Chaudhuri et al. 2018; Pi and Zhou 2012; Tawada and Sun 2010).

  12. We can also interpret the two periods as two different scenarios. Here, we thank an anonymous referee for this suggestion.

  13. \( a_{ij} \) is determined endogenously, but we can simplify it by using the property of linear homogeneity of the corresponding production function. For example, according to Eq. (1), we have \( 1 = F^{1} \left( {a_{{{\text{S}}X}} ,a_{{{\text{K}}X}} } \right) \). Totally differentiating \( 1 = F^{1} \left( {a_{{{\text{S}}X}} ,a_{{{\text{K}}X}} } \right) \), we can obtain \( \theta_{{{\text{S}}X}} \hat{a}_{{{\text{S}}X}} { + }\theta_{{{\text{K}}X}} \hat{a}_{{{\text{K}}X}} = 0 \).

  14. The status quo unskilled wage rate comes from the envelope property of the Harris–Todaro structure (see Chaudhuri and Mukhopadhyay 2009).

  15. Here, we assume the subsidy on skill formation is targeted at all of unskilled labor, so the supply of unskilled labor is still \( L\left( {w_{\text{U}} ,w_{\text{S}} ,s} \right) \). If instead we assume the subsidy on skill formation is targeted at unskilled labor employed by the urban unskilled sector, then the supply will be \( L\left( {\bar{w}_{\text{U}} ,w_{\text{S}} ,s} \right) \). Or, if it is targeted at unemployed unskilled labor, then the supply will be \( L\left( {w_{\text{S}} ,s} \right) \). It turns out that we can obtain almost the same results from the three cases.

  16. A preliminary discussion may be as follows. We may think that the extension works by two steps. First of all, the negative externalities imposed on production take effect, which generates the results in Propositions 14. Note that the first step will improve the environment. Second of all, the negative externalities imposed on the effective endowments of skilled labor and unskilled labor take effect. Since the environment is improved in the first step, the supplies of skilled labor and unskilled labor will increase, which will suppress the skilled wage rate and the unskilled wage rate. Hence, how wage inequality will be changed is determined by the two aspects.

  17. Denote period one and period two as \( t_{1} \) and \( t_{2} \). We can consider that the adjustment processes of period one take place at \( \left( {t_{1} - \varepsilon_{1} ,t_{1} + \varepsilon_{1} } \right) \), where \( \varepsilon_{1} \) is small enough relative to \( t_{2} - t_{1} \).

References

  • Acemoglu D (2002) Technical change, inequality, and the labor market. J Econ Lit 40(1):7–72

    Article  Google Scholar 

  • Autor DH (2014) Skills, education, and the rise of earnings inequality among the “other 99 percent”. Science 344(6186):843–851

    Article  Google Scholar 

  • Barro R (2001) Human capital and growth. Am Econ Rev 91(2):12–17

    Article  Google Scholar 

  • Beladi H, Chaudhuri S, Yabuuchi S (2008) Can international factor mobility reduce wage inequality in a dual economy? Rev Int Econ 16(5):893–903

    Google Scholar 

  • Beladi H, Chakrabarti A, Marjit S (2010) Skilled-unskilled wage inequality and urban unemployment. Econ Inq 48(4):997–1007

    Article  Google Scholar 

  • Beladi H, Marjit S, Broll U (2011) Capital mobility, skill formation and polarization. Econ Model 28(4):1902–1906

    Article  Google Scholar 

  • Beladi H, Liu L, Oladi R (2013) On pollution permits and abatement. Econ Lett 119(3):302–305

    Article  Google Scholar 

  • Chaudhuri S (2008) Wage inequality in a dual economy and international mobility of factors: do factor intensities always matter? Econ Model 25(6):1155–1164

    Article  Google Scholar 

  • Chaudhuri S (2014) Foreign capital, non-traded goods and welfare in a developing economy in the presence of externalities. Int Rev Econ Finance 31:249–262

    Article  Google Scholar 

  • Chaudhuri S, Mukhopadhyay U (2009) Revisiting the informal sector: a general equilibrium approach. Springer, New York

    Google Scholar 

  • Chaudhuri S, Kumar Dwibedi J, Biswas A (2017) Subsidizing healthcare in the presence of market distortions. Econ Model 64:539–552

    Article  Google Scholar 

  • Chaudhuri S, Ghosh A, Banerjee D (2018) Can public subsidy on education necessarily improve wage inequality? Int Rev Econ Finance 54:165–177

    Article  Google Scholar 

  • Copeland BR, Taylor MS (1999) Trade, spatial separation, and the environment. J Int Econ 47(1):137–168

    Article  Google Scholar 

  • Dixit A (1986) Comparative statics for oligopoly. Int Econ Rev 27(1):107–122

    Article  Google Scholar 

  • Fortin NM, Lemieux T (1997) Institutional changes and rising wage inequality: is there a linkage? J Econ Perspect 11(2):75–96

    Article  Google Scholar 

  • Gupta MR, Dutta PB (2010) Skilled–unskilled wage inequality, nontraded good and endogenous supply of skilled labour: a theoretical analysis. Econ Model 27(5):923–934

    Article  Google Scholar 

  • Gustke C (2016) Pollution crisis is choking the Chinese economy. CNBC News Report

  • Harris JR, Todaro MP (1970) Migration, unemployment and development: a two-sector analysis. Am Econ Rev 60(1):126–142

    Google Scholar 

  • Heckman JJ (2006) Skill formation and the economics of investing in disadvantaged children. Science 312(5782):1900

    Article  Google Scholar 

  • Jones RW (1965) The structure of simple general equilibrium models. J Polit Econ 73(6):557–572

    Article  Google Scholar 

  • Jones RW (1971) A three factor model in theory, trade, and history. In: Bhagwati JN, Jones RW, Mundell RA, Vanek J (eds) Trade, balance of payments and growth: papers in international economics in honor of Charles P. Kindleberger. North-Holland, Amsterdam, pp 3–21

    Google Scholar 

  • Kar S, Guha-Khasnobis B (2006) Economic reform, skill formation and foreign capital. World Econ 29(1):79–94

    Article  Google Scholar 

  • Keen MJ, Kotsogiannis C (2004) Tax competition in federations and the welfare consequences of decentralization. J Urban Econ 56(3):397–407

    Article  Google Scholar 

  • Kondoh K, Yabuuchi S (2012) Unemployment, environmental policy, and international migration. J Int Trade Econ Dev 21(5):677–690

    Article  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  Google Scholar 

  • Marjit S, Acharya R (2003) International trade, wage inequality and the developing economy: a general equilibrium approach. Springer, Heidelberg

    Book  Google Scholar 

  • Oladi R, Beladi H (2015) On foreign aid, pollution and abatement. Environ Dev Econ 20(6):797–812

    Article  Google Scholar 

  • Oladi R, Gilbert J (2011) Monopolistic competition and North-South trade. Rev Int Econ 19(3):459–474

    Article  Google Scholar 

  • Pan L (2014) The impacts of education investment on skilled–unskilled wage inequality and economic development in developing countries. Econ Model 39:174–181

    Article  Google Scholar 

  • Pan L, Zhou Y (2013) International factor mobility, environmental pollution and skilled-unskilled wage inequality in developing countries. Econ Model 33:826–831

    Article  Google Scholar 

  • Pi J, Zhang P (2017) Foreign capital, pollution control, and wage inequality in developing countries. Int Rev Econ Finance 48:280–288

    Article  Google Scholar 

  • Pi J, Zhang P (2018) Horizontal mergers and wage inequality. J Inst Theor Econ 174(3):495–513

    Article  Google Scholar 

  • Pi J, Zhou Y (2012) Public infrastructure provision and skilled-unskilled wage inequality in developing countries. Labour Econ 19(6):881–887

    Article  Google Scholar 

  • Pi J, Zhou Y (2015) The impacts of corruption on wage inequality and rural–urban migration in developing countries. Ann Reg Sci 54(3):753–768

    Article  Google Scholar 

  • Tawada M, Nakamura A (2009) Environment and the Harris and Todaro paradoxes. In: Kamihigashi T, Zhao L (eds) International trade and economic dynamics: essays in memory of Koji Shimomura. Springer, Berlin, pp 87–99

    Chapter  Google Scholar 

  • Tawada M, Sun S (2010) Urban pollution, unemployment and national welfare in a dualistic economy. Rev Dev Econ 14(2):311–322

    Article  Google Scholar 

  • Xie Y, Zhou X (2014) Income inequality in today’s China. Proc Natl Acad Sci 111:6928–6933

    Article  Google Scholar 

  • Yabuuchi S, Chaudhuri S (2009) Skill formation, capital adjustment cost and wage inequality. Rev Urban Reg Dev Stud 21(1):2–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengqing Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Proposition 1

The determinant of the coefficient matrix of Eq. (15), which is denoted as \( \Delta_{1} \), cannot be judged by direct calculation. However, the adjustment processes in Appendix E suggest that stability requires \( \Delta_{1} \) to be negative.

We obtain the following results by using the Cramer’s rule to solve Eq. (15):

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}X}} \theta_{{{\text{T}}Z}} \theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}Y}}^{2} }}{{\Delta_{1} }} > 0, \\ \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \theta_{{{\text{T}}Z}} \lambda_{{{\text{K}}Y}}^{2} }}{{\Delta_{1} }} > 0, \\ \frac{{\hat{E}}}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{T}}Z}} \theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}Y}} \lambda_{Y} \left( {\lambda_{{{\text{K}}X}} \sigma_{X} + \theta_{{{\text{S}}X}} \theta_{{{\text{T}}Z}} \theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}Y}} \sigma_{Y} } \right)}}{{\Delta_{1} }} > 0. \\ \end{aligned} $$

The first part of Proposition 1 can be verified from \( \frac{{\hat{E}}}{{\hat{s}}} > 0 \). As for the second part, we can calculate wage inequality as follows:

$$ \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} = - \frac{{e_{s} \theta_{{{\text{T}}Z}} \lambda_{{{\text{K}}Y}}^{2} \left( {\theta_{{{\text{K}}X}} - \theta_{{{\text{K}}Y}} } \right)}}{{\Delta_{1} }}, $$

which implies that if \( \theta_{{{\text{K}}X}} > \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} > 0 \); and if \( \theta_{{{\text{K}}X}} < \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} < 0 \).

Appendix 2: Proof of Proposition 2

With the help of adjustment processes similar to Appendix E, we can know that stability requires the determinant of the coefficient matrix of Eq. (16) (denoted as \( \Delta_{2} \)) to be negative.

We have the following results by using the Cramer’s rule to solve Eq. (16):

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}X}} \theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}Y}} \left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{2} }}, \\ \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}Y}} \left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{2} }}, \\ \frac{{\hat{E}}}{{\hat{s}}} & = - \frac{{e_{s} \lambda_{Y} \left\{ {\theta_{{{\text{T}}Z}} \left[ {\theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}X}} \sigma_{X} + \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}Y}} \left( {\theta_{{{\text{U}}Y}} + \theta_{{{\text{K}}Y}} \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Y}} \lambda_{L} } \right)\sigma_{Y} } \right] + \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}X}} \lambda_{{{\text{K}}Y}} \lambda_{{{\text{U}}Z}} \lambda_{L} \sigma_{Z} } \right\}}}{{\Delta_{2} }} > 0. \\ \end{aligned} $$

We immediately obtain the first part of Proposition 2. As for the second part and the third part, wage inequality can be expressed as follows:

$$ \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} = - \frac{{e_{s} \lambda_{{{\text{K}}Y}} \left( {\theta_{{{\text{K}}X}} - \theta_{{{\text{K}}Y}} } \right)\left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{2} }}, $$

which implies that when \( \varepsilon > \frac{{\theta_{{{\text{T}}Z}} C}}{{\lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} }} \), if \( \theta_{{{\text{K}}X}} > \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} > 0 \), and if \( \theta_{{{\text{K}}X}} < \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} < 0 \); and when \( \varepsilon < \frac{{\theta_{{{\text{T}}Z}} C}}{{\lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} }} \), if \( \theta_{{{\text{K}}X}} < \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} > 0 \), and if \( \theta_{{{\text{K}}X}} > \theta_{{{\text{K}}Y}} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} < 0 \).

Appendix 3: Proof of Proposition 3

By calculation and simplification, the determinant of the coefficient matrix of Eq. (20), which we denote as \( \Delta_{3} \), is negative:

$$ \Delta_{3} = - \theta_{{{\text{S}}X}} \theta_{{{\text{K}}Y}} \lambda_{{{\text{K}}Y}}^{2} \left( {e_{{w_{\text{U}} }} \theta_{{{\text{T}}Z}} + \theta_{{{\text{T}}Z}} \lambda_{{{\text{U}}Y}} + \lambda_{{{\text{U}}Z}} \sigma_{Z} } \right) < 0. $$

We get the following results by using the Cramer’s rule to solve Eq. (20):

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} }}{{\hat{s}}} & = 0, \\ \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \theta_{{{\text{T}}Z}} \lambda_{{{\text{K}}Y}}^{2} }}{{\Delta_{3} }} > 0, \\ \frac{{\hat{E}}}{{\hat{s}}} & = 0. \\ \end{aligned} $$

The first part of Proposition 3 is straightforward. As for the second part and the third part, note that:

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} & = \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \theta_{{{\text{T}}Z}} \lambda_{{{\text{K}}Y}}^{2} }}{{\Delta_{3} }} < 0, \\ \frac{{\hat{\mu }}}{{\hat{s}}} & = - \frac{1 + \mu }{\mu } \cdot \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} < 0, \\ \end{aligned} $$

where the second equation is derived from Eq. (17).

Appendix 4: Proof of Proposition 4

The adjustment processes similar to Appendix E suggest that stability requires the determinant of the coefficient matrix of Eq. (21) (denoted as \( \Delta_{4} \)) to be negative.

We obtain the following results by using the Cramer’s rule to solve Eq. (21):

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} }}{{\hat{s}}} & = 0, \\ \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} & = - \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}Y}} \left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{4} }}, \\ \frac{{\hat{E}}}{{\hat{s}}} & = - \frac{{\theta_{{{\text{S}}X}} \theta_{{{\text{K}}Y}} \lambda_{{{\text{K}}X}} \lambda_{Y} \lambda_{{{\text{K}}Y}} \lambda_{L} e_{s} \left( {\theta_{{{\text{T}}Z}} \lambda_{{{\text{U}}Y}} + \lambda_{{{\text{U}}Z}} \sigma_{Z} } \right)}}{{\Delta_{4} }} > 0. \\ \end{aligned} $$

We immediately have the first part of Proposition 4. As for the second part, note that:

$$ \begin{aligned} \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} & = \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}Y}} \left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{4} }}, \\ \frac{{\hat{\mu }}}{{\hat{s}}} & = - \frac{1 + \mu }{\mu } \cdot \frac{{\hat{w}_{\text{U}} }}{{\hat{s}}} = \frac{1 + \mu }{\mu } \cdot \frac{{e_{s} \theta_{{{\text{K}}Y}} \theta_{{{\text{S}}X}} \lambda_{{{\text{K}}Y}} \left( {\varepsilon \lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} - \theta_{{{\text{T}}Z}} C} \right)}}{{\Delta_{4} }}, \\ \end{aligned} $$

which implies that if \( \varepsilon > \frac{{\theta_{{{\text{T}}Z}} C}}{{\lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} }} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} < 0 \) and \( \frac{{\hat{\mu }}}{{\hat{s}}} < 0 \); and if \( \varepsilon < \frac{{\theta_{{{\text{T}}Z}} C}}{{\lambda_{{{\text{K}}X}} \lambda_{{{\text{U}}Z}} \lambda_{L} \lambda_{Y} \sigma_{Z} }} \), then \( \frac{{\hat{w}_{\text{S}} - \hat{w}_{\text{U}} }}{{\hat{s}}} > 0 \) and \( \frac{{\hat{\mu }}}{{\hat{s}}} > 0 \).

Appendix 5: The adjustment processes

The methodology used here is in line with Beladi et al. (2008). According to Eqs. (3), (7), and (9)–(14), we can specify the adjustment processes as follows:

$$ \dot{X} = d_{1} \left( {p_{X} - a_{{{\text{S}}X}} w_{\text{S}} - a_{{{\text{K}}X}} r} \right), $$
(22)
$$ \dot{Y} = d_{2} \left( {p_{Y} - a_{{{\text{U}}Y}} w_{\text{U}} - a_{{{\text{K}}Y}} r} \right), $$
(23)
$$ \dot{Z} = d_{3} \left( {1 - a_{{{\text{U}}Z}} w_{\text{U}} - a_{{{\text{T}}Z}} \tau } \right), $$
(24)
$$ \dot{E} = d_{4} \left( {\bar{E} - \lambda Y - E} \right), $$
(25)
$$ \dot{w}_{\text{S}} = d_{5} \left( {a_{{{\text{S}}X}} X - \bar{L}_{\text{S}} } \right), $$
(26)
$$ \dot{w}_{\text{U}} = d_{6} \left[ {a_{{{\text{U}}Y}} Y + a_{{{\text{U}}Z}} Z - L\left( {w_{\text{U}} ,w_{\text{S}} ,s} \right)} \right], $$
(27)
$$ \dot{r} = d_{7} \left( {a_{{{\text{K}}X}} X + a_{{{\text{K}}Y}} Y - \bar{K}} \right), $$
(28)
$$ \dot{\tau } = d_{8} \left( {a_{{{\text{T}}Z}} Z - \bar{T}} \right), $$
(29)

where the dot notation over a variable represents the time derivative (e.g., \( \dot{X} = \frac{{{\text{d}}X}}{{{\text{d}}t}} \)), \( d_{i} > 0 \)\( \left( {i = 1,2, \ldots ,8} \right) \) stands for the speed of adjustments, and the mathematic expressions in the brackets of the right-hand sides of Eqs. (22)–(29) denote the excess demand functions.Footnote 17 Taking linear approximations of Eqs. (22)–(29) around the equilibrium values of the variables, and denoting the Jacobian as J, we have:

$$ J = Q_{1} \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & { - \theta_{{{\text{S}}X}} } & 0 & { - \theta_{{{\text{K}}X}} } & 0 \\ 0 & 0 & 0 & 0 & 0 & { - \theta_{{{\text{U}}Y}} } & { - \theta_{{{\text{K}}Y}} } & 0 \\ 0 & 0 & 0 & \varepsilon & 0 & { - \theta_{{{\text{U}}Z}} } & 0 & { - \theta_{{{\text{T}}Z}} } \\ 0 & { - \lambda_{Y} } & 0 & { - 1} & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & { - \theta_{{{\text{K}}X}} \sigma_{X} } & 0 & {\theta_{{{\text{K}}X}} \sigma_{X} } & 0 \\ 0 & {\lambda_{{{\text{U}}Y}} } & {\lambda_{{{\text{U}}Z}} } & 0 & {e_{{w_{\text{S}} }} } & { - C_{1} } & {\lambda_{{{\text{U}}Y}} \theta_{{{\text{K}}Y}} \sigma_{Y} } & {\lambda_{{{\text{U}}Z}} \theta_{{{\text{T}}Z}} \sigma_{Y} } \\ {\lambda_{{{\text{K}}X}} } & {\lambda_{{{\text{K}}Y}} } & 0 & 0 & {\lambda_{{{\text{K}}X}} \theta_{{{\text{S}}X}} \sigma_{X} } & {\lambda_{{{\text{K}}Y}} \theta_{{{\text{U}}Y}} \sigma_{Y} } & { - C_{2} } & 0 \\ 0 & 0 & 1 & 0 & 0 & {\theta_{{{\text{U}}Z}} \sigma_{Z} } & 0 & { - \theta_{{{\text{U}}Z}} \sigma_{Z} } \\ \end{array} } \right)Q_{2} , $$

where \( C_{1} = \lambda_{{{\text{U}}Y}} \theta_{{{\text{K}}Y}} \sigma_{Y} + \lambda_{{{\text{U}}Z}} \theta_{{{\text{T}}Z}} \sigma_{Z} + e_{{W_{\text{U}} }} > 0 \), \( C_{2} = \lambda_{{{\text{K}}X}} \theta_{{{\text{S}}X}} \sigma_{X} + \lambda_{{{\text{K}}Y}} \theta_{{{\text{U}}Y}} \sigma_{Y} > 0 \), \( Q_{1} = {\text{diag}}(d_{1} p_{X} ,d_{2} p_{Y} ,d_{3} ,d_{4} E,d_{5} \bar{L}_{\text{S}} ,d_{6} L,d_{7} \bar{K},d_{8} \bar{T}) \), and \( Q_{2} = {\text{diag}}(1/X,1/Y,1/Z,1/E,1/w_{\text{S}} ,1/w_{\text{U}} ,1/r,1/\tau ) \).

Stability requires all eigenvalues of the coefficient matrix of the linearized system to have negative real parts (see, e.g., Dixit 1986, p. 110; Keen and Kotsogiannis 2004, p. 406). This implies that the trace is negative, and the sign of the determinant of the coefficient matrix takes the form of \( {\text{sign}}\left| J \right| = \left( { - 1} \right)^{n} \), where n is the order of J (see Beladi et al. 2008, p. 901). For the matrix discussed above, first, since the diagonal elements are either zero or negative, the trace is always negative. Second, \( n = 8 \), and thus, stability requires \( \left| J \right| > 0 \), where \( \left| J \right| \) is as follows:

$$ \left| J \right| = \varphi \left| {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & { - \theta_{{{\text{S}}X}} } & 0 & { - \theta_{{{\text{K}}X}} } & 0 \\ 0 & 0 & 0 & 0 & 0 & { - \theta_{{{\text{U}}Y}} } & { - \theta_{{{\text{K}}Y}} } & 0 \\ 0 & 0 & 0 & \varepsilon & 0 & { - \theta_{{{\text{U}}Z}} } & 0 & { - \theta_{{{\text{T}}Z}} } \\ 0 & { - \lambda_{Y} } & 0 & { - 1} & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & { - \theta_{{{\text{K}}X}} \sigma_{X} } & 0 & {\theta_{{{\text{K}}X}} \sigma_{X} } & 0 \\ 0 & {\lambda_{{{\text{U}}Y}} } & {\lambda_{{{\text{U}}Z}} } & 0 & {e_{{w_{\text{S}} }} } & { - C_{1} } & {\lambda_{{{\text{U}}Y}} \theta_{{{\text{K}}Y}} \sigma_{Y} } & {\lambda_{{{\text{U}}Z}} \theta_{{{\text{T}}Z}} \sigma_{Y} } \\ {\lambda_{{{\text{K}}X}} } & {\lambda_{{{\text{K}}Y}} } & 0 & 0 & {\lambda_{{{\text{K}}X}} \theta_{{{\text{S}}X}} \sigma_{X} } & {\lambda_{{{\text{K}}Y}} \theta_{{{\text{U}}Y}} \sigma_{Y} } & { - C_{2} } & 0 \\ 0 & 0 & 1 & 0 & 0 & {\theta_{{{\text{U}}Z}} \sigma_{Z} } & 0 & { - \theta_{{{\text{U}}Z}} \sigma_{Z} } \\ \end{array} } \right|, $$

where \( \varphi = \prod\nolimits_{i = 1}^{8} {d_{i} } \frac{{p_{X} p_{Y} \bar{L}_{\text{S}} L\bar{K}\bar{T}}}{{XYZw_{\text{S}} w_{\text{U}} r\tau }} > 0 \). By adding a scalar multiple of one row to another row, and then interchanging the columns, we can obtain:

$$ \left| J \right| = - \frac{\varphi }{{\lambda_{{{\text{K}}Y}} }}\left| {\begin{array}{*{20}c} { - \theta_{{{\text{S}}X}} } & 0 & 0 & { - \theta_{{{\text{K}}X}} } & 0 \\ 0 & { - \theta_{{{\text{U}}Y}} } & 0 & { - \theta_{{{\text{K}}Y}} } & 0 \\ 0 & { - \theta_{{{\text{U}}Z}} } & { - \theta_{{{\text{T}}Z}} } & 0 & \varepsilon \\ {\lambda_{{{\text{K}}X}} \lambda_{Y} \sigma_{X} } & {\theta_{{{\text{U}}Y}} \lambda_{{{\text{K}}Y}} \lambda_{Y} \sigma_{Y} } & 0 & { - A_{1} } & { - \lambda_{{{\text{K}}Y}} } \\ {A_{2} } & { - A_{3} } & {\lambda_{{{\text{K}}Y}} \lambda_{{{\text{U}}Z}} \sigma_{Z} } & {A_{4} } & 0 \\ \end{array} } \right| = - \frac{\varphi }{{\lambda_{{{\text{K}}Y}} }}\Delta_{1} , $$

where \( A_{i} \)\( \left( {i = 1,2,3,4} \right) \) is defined behind Eq. (15), and \( \Delta_{1} \) is the determinant of the coefficient matrix of Eq. (15). Hence, stability in turn requires \( \Delta_{1} < 0 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. Skill formation, environmental pollution, and wage inequality. Ann Reg Sci 62, 405–424 (2019). https://doi.org/10.1007/s00168-019-00901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-019-00901-6

JEL Classification

Navigation