Skip to main content
Log in

The occurrence of ACL injury influenced by the variance in width between the tibial spine and the femoral intercondylar notch

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to reveal the influence of the variance in width between the tibial spine and the femoral intercondylar notch on the occurrence of ACL injury.

Methods

Thirty-nine subjects undergoing anatomical ACL reconstruction (30 female, 9 male; average age 29 ± 15.2) and 37 subjects with intact ACL (21 female, 16 male; average age 29 ± 12.5) were included in this study. In the anterior–posterior knee radiograph, tibial spine height, and the length between the top of the medial and lateral tibial spine (tibial spine width) were measured. In axial knee MRI exhibiting the longest femoral epicondylar length, intercondylar notch outlet length was measured and notch width index was calculated. Tibial spine width/notch outlet length, and tibial spine width/notch width index were compared between the ACL tear and intact groups.

Results

Tibial spine width/notch outlet length of the ACL tear and intact groups was 0.6 ± 0.1 and 0.7 ± 0.1, respectively. Tibial spine width/notch width index of the ACL tear and intact groups was 0.4 ± 0.1, and 0.6 ± 0.1, respectively. Both parameters were significantly larger in the ACL intact group.

Conclusion

Both tibial spine width/notch outlet length and tibial spine width/notch width index were significantly smaller in the ACL tear group when compared with the ACL intact group. The occurrence of ACL injury influenced by the variance in width between the tibial spine and the femoral intercondylar notch.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

References

  1. Ahn JH, Jeong HJ, Ko CS, Ko TS, Kim JH (2013) Three-dimensional reconstruction computed tomography evaluation of tunnel location during single-bundle anterior cruciate ligament reconstruction: a comparison of transtibial and 2-incision tibial tunnel-independent techniques. Clin Orthop Surg 5(1):26–35

    Article  Google Scholar 

  2. Cavaignac E, Perroncel G, Thépaut M, Vial J, Accadbled F, De Gauzy JS (2017) Relationship between tibial spine size and the occurrence of osteochondritis dissecans: an argument in favour of the impingement theory. Knee Surg Sports Traumatol Arthrosc 25:2442–2446

    Article  Google Scholar 

  3. Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Biomech 39(13):2371–2377

    Article  Google Scholar 

  4. Driscoll MD, Isabell GP Jr, Conditt MA, Ismaily SK, Jupiter DC, Noble PC, Lowe WR (2012) Comparison of 2 femoral tunnel locations in anatomic single-bundle anterior cruciate ligament reconstruction: a biomechanical study. Arthroscopy 28(10):1481–1489

    Article  Google Scholar 

  5. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225

    Article  Google Scholar 

  6. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS (2015) Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 23(3):640–648

    Article  Google Scholar 

  7. Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749

    Article  CAS  Google Scholar 

  8. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Size correlation between the tibial anterior cruciate ligament footprint and the tibia plateau. Knee Surg Sports Traumatol Arthrosc 23(4):1147–1152

    Article  Google Scholar 

  9. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24(1):254–259

    Article  Google Scholar 

  10. Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18(9):1226–1231

    Article  Google Scholar 

  11. Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(3):664–670

    Article  Google Scholar 

  12. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc 23(11):3157–3162

    Article  Google Scholar 

  13. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med. 39(9):2016–2026

    Article  Google Scholar 

  14. Kato Y, Maeyama A, Lertwanich P, Wang JH, Ingham SJ, Kramer S, Martins CQ, Smolinski P, Fu FH (2013) Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(4):816–823

    Article  Google Scholar 

  15. Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA (2015) The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 31(3):435–444

    Article  Google Scholar 

  16. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687

    Article  Google Scholar 

  17. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219

    Article  Google Scholar 

  18. Lansdown D, Ma CB (2018) The influence of tibial and femoral bone morphology on knee kinematics in the anterior cruciate ligament injured knee. Clin Sports Med 37(1):127–136

    Article  Google Scholar 

  19. Lee KW, Hwang YS, Chi YJ, Yang DS, Kim HY, Choy WS (2014) Anatomic single bundle anterior cruciate ligament reconstruction by low accessory anteromedial portal technique: an in vivo 3D CT study. Knee Surg Relat Res 26(2):97–105

    Article  Google Scholar 

  20. Levins JG, Sturnick DR, Argentieri EC, Gardner-Morse M, Vacek PM, Desarno MJ, Tourville TW, Slauterbeck JR, Beynnon BD (2016) Geometric risk factors associated with noncontact anterior cruciate ligament graft rupture. Am J Sports Med 44(10):2537–2545

    Article  Google Scholar 

  21. Maeyama A, Hoshino Y, Debandi A et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238

    Article  Google Scholar 

  22. Nha KW, Han JH, Kwon JH, Kang KW, Park HJ, Song JG (2015) Anatomical single-bundle anterior cruciate ligament reconstruction using a freehand transtibial technique. Knee Surg Relat Res 27(2):117–122

    Article  Google Scholar 

  23. Oka S, Schuhmacher P, Brehmer A, Traut U, Kirsch J, Siebold R (2016) Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surg Sports Traumatol Arthrosc 24(3):747–753

    Article  Google Scholar 

  24. Robin BN, Jani SS, Marvil SC, Reid JB, Schillhammer CK, Lubowitz JH (2015) Advantages and disadvantages of transtibial, anteromedial portal, and outside-in femoral tunnel drilling in single-bundle anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 31(7):1412–1417

    Article  Google Scholar 

  25. Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24(2):154–161

    Article  Google Scholar 

  26. Sturnick DR, Argentieri EC, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2014) A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res 32(11):1451–1457

    Article  Google Scholar 

  27. Tensho K, Shimodaira H, Aoki T, Narita N, Kato H, Kakegawa A, Fukushima N, Moriizumi T, Fujii M, Fujinaga Y, Saito N (2014) Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. Am J Sports Med 42(6):1433–1440

    Article  Google Scholar 

  28. van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27:1235–1241

    Article  Google Scholar 

  29. Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH (2015) Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23(3):680–686

    Article  Google Scholar 

  30. Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24:39–43

    Article  Google Scholar 

  31. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    Article  Google Scholar 

  32. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22(3):240–251

    Article  Google Scholar 

  33. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single-and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med. 39(8):1789–1799

    Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has been approved by the ethics committee of Kamimoku Spa hospital (KH27004).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iriuchishima, T., Goto, B. & Fu, F.H. The occurrence of ACL injury influenced by the variance in width between the tibial spine and the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 28, 3625–3630 (2020). https://doi.org/10.1007/s00167-020-05965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-05965-y

Keywords

Navigation