Skip to main content
Log in

Femoral-tibial fixation affects risk of revision and reoperation after anterior cruciate ligament reconstruction using hamstring autograft

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Newer fixation devices for hamstring (HS) autograft have been introduced over the years, yet the impact of these devices on ACLR outcomes requiring surgical intervention remains unclear. We sought to evaluate the risk of aseptic revision and reoperation after HS autograft ACLR according to various femoral-tibial fixation methods.

Methods

A cohort study was conducted using the Kaiser Permanente ACLR Registry. Primary isolated unilateral ACLR patients who received a HS autograft were identified (2007–2014). Fixation devices were categorized as crosspin, interference, suspensory, or combination (defined as more than one fixation device used on the same side) and femoral-tibial fixation groups used in more than 500 ACLR were evaluated. Cox proportional-hazard regression was used to evaluate the association between femoral-tibial fixation method and outcomes while adjusting for confounders.

Results

6,593 primary ACLR were included. Four femoral-tibial fixation groups had more than 500 ACLR: suspensory–interference (n = 3004, 45.6%), interference–interference (n = 1659, 25.2%), suspensory–combination (n = 1103, 16.7%), and crosspin–interference (n = 827, 12.5%). After adjusting for covariates, revision risk was lower for crosspin–interference (HR = 0.43, 95% CI 0.29–0.65) and interference–interference (HR = 0.63, 95% CI 0.41–0.95) methods compared to the suspensory–interference. In contrast, reoperation risk was higher for crosspin–interference (HR = 2.13, 95% CI 1.37–3.32) and suspensory–combination (HR = 1.68, 95% CI 1.04–2.69) methods compared to suspensory–interference.

Conclusions

ACLR using HS autograft appears to have the lowest risk of aseptic revision when crosspin or interference fixation is used on the femoral side and is coupled with an interference screw on the tibial side.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACLR:

Anterior cruciate ligament reconstruction

ACLRR:

Anterior cruciate ligament reconstruction registry

AM:

Anteromedial

BMI:

Body mass index

BPTB:

Bone patellar tendon bone

CI:

Confidence interval

EHR:

Electronic health record

HS:

Hamstring

HR:

Hazard ratio

IQR:

Interquartile range

NKLR:

Norwegian Knee Ligament Register

SD:

Standard deviation

References

  1. Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT III, et al (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44:924–929

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahlden M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J (2012) The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med 40:2230–2235

    PubMed  Google Scholar 

  3. Arama Y, Salmon LJ, Sri-Ram K, Linklater J, Roe JP, Pinczewski LA (2015) Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, blinded, randomized controlled trial with 5-year follow-up. Am J Sports Med 43:1893–1901

    PubMed  Google Scholar 

  4. Araujo PH, Asai S, Pinto M, Protta T, Middleton K, Linde-Rosen M et al (2015) ACL graft position affects in situ graft force following ACL reconstruction. J Bone Jt Surg Am 97:1767–1773

    Google Scholar 

  5. Aydin D, Ozcan M (2016) Evaluation and comparison of clinical results of femoral fixation devices in arthroscopic anterior cruciate ligament reconstruction. Knee 23:227–232

    PubMed  Google Scholar 

  6. Bjorkman P, Sandelin J, Harilainen A (2015) A randomized prospective controlled study with 5-year follow-up of cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:2353–2359

    PubMed  Google Scholar 

  7. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    PubMed  Google Scholar 

  8. Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res 469:1075–1081

    PubMed  Google Scholar 

  9. Desai N, Andernord D, Sundemo D, Alentorn-Geli E, Musahl V, Fu F et al (2017) Revision surgery in anterior cruciate ligament reconstruction: a cohort study of 17,682 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 25:1542–1554

    PubMed  Google Scholar 

  10. Duffee A, Magnussen RA, Pedroza AD, Flanigan DC, Kaeding CC (2013) Transtibial ACL femoral tunnel preparation increases odds of repeat ipsilateral knee surgery. J Bone Jt Surg Am 95:2035–2042

    Google Scholar 

  11. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA (2014) Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21:743–748

    PubMed  Google Scholar 

  12. Eysturoy NH, Nissen KA, Nielsen T, Lind M (2018) The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction. Am J Sports Med 46:524–530

    PubMed  Google Scholar 

  13. Frosch S, Rittstieg A, Balcarek P, Walde TA, Schuttrumpf JP, Wachowski MM et al (2012) Bioabsorbable interference screw versus bioabsorbable cross pins: influence of femoral graft fixation on the clinical outcome after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:2251–2256

    PubMed  PubMed Central  Google Scholar 

  14. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. Am J Sports Med 27:821–830

    CAS  PubMed  Google Scholar 

  15. Galdi B, Reyes A, Brabston EW, Levine WN (2015) Autologous hamstring anterior cruciate ligament graft failure using the anteromedial portal technique with suspensory femoral fixation: a case series of 7 patients. Orthop J Sports Med 3:2325967114566599

    PubMed  PubMed Central  Google Scholar 

  16. Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G et al (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328

    PubMed  Google Scholar 

  17. Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br 87:593–603

    CAS  Google Scholar 

  18. Hsu SL, Wang CJ (2013) Graft failure versus graft fixation in ACL reconstruction: histological and immunohistochemical studies in rabbits. Arch Orthop Trauma Surg 133:1197–1202

    PubMed  Google Scholar 

  19. Ibrahim SA, Abdul Ghafar S, Marwan Y, Mahgoub AM, Al Misfer A, Farouk H et al (2015) Intratunnel versus extratunnel autologous hamstring double-bundle graft for anterior cruciate ligament reconstruction: a comparison of 2 femoral fixation procedures. Am J Sports Med 43:161–168

    PubMed  Google Scholar 

  20. Jarvela T, Moisala AS, Paakkala T, Paakkala A (2008) Tunnel enlargement after double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study. Arthroscopy 24:1349–1357

    PubMed  Google Scholar 

  21. Johnson JS, Smith SD, LaPrade CM, Turnbull TL, LaPrade RF, Wijdicks CA (2015) A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads. Am J Sports Med 43:154–160

    PubMed  Google Scholar 

  22. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    PubMed  Google Scholar 

  23. Maletis GB, Chen J, Inacio MC, Funahashi TT (2016) Age-related risk factors for revision anterior cruciate ligament reconstruction: a cohort study of 21,304 patients from the Kaiser Permanente anterior cruciate ligament registry. Am J Sports Med 44:331–336

    PubMed  Google Scholar 

  24. Maletis GB, Inacio MC, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Jt J 95-b:623–628

    CAS  Google Scholar 

  25. Maletis GB, Inacio MC, Funahashi TT (2013) Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. Am J Sports Med 41:2090–2098

    PubMed  Google Scholar 

  26. Maletis GB, Inacio MC, Funahashi TT (2015) Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med 43:641–647

    PubMed  Google Scholar 

  27. Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT et al (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 29:1948–1953

    PubMed  Google Scholar 

  28. Mayr R, Heinrichs CH, Eichinger M, Coppola C, Schmoelz W, Attal R (2015) Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw. Am J Sports Med 43:1380–1385

    PubMed  Google Scholar 

  29. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1111–1118

    PubMed  Google Scholar 

  30. Paxton EW, Kiley ML, Love R, Barber TC, Funahashi TT, Inacio MC (2013) Kaiser Permanente implant registries benefit patient safety, quality improvement, cost-effectiveness. Jt Comm J Qual Patient Saf 39:246–252

    PubMed  Google Scholar 

  31. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM et al (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med 42:285–291

    PubMed  Google Scholar 

  32. Persson A, Gifstad T, Lind M, Engebretsen L, Fjeldsgaard K, Drogset JO et al (2017) Graft fixation influences revision risk after ACL reconstruction with hamstring tendon autografts. Acta Orthop 89:204–210

    PubMed  PubMed Central  Google Scholar 

  33. Persson A, Kjellsen AB, Fjeldsgaard K, Engebretsen L, Espehaug B, Fevang JM (2015) Registry data highlight increased revision rates for endobutton/biosure HA in ACL reconstruction with hamstring tendon autograft: a nationwide cohort study from the Norwegian Knee Ligament Registry, 2004–2013. Am J Sports Med 43:2182–2188

    PubMed  Google Scholar 

  34. Petre BM, Smith SD, Jansson KS, de Meijer PP, Hackett TR, LaPrade RF et al (2013) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 41:416–422

    PubMed  Google Scholar 

  35. Prentice HA, Lind M, Mouton C, Persson A, Magnusson H, Gabr A et al (2018) Patient demographic and surgical characteristics in anterior cruciate ligament reconstruction: a description of registries from six countries. Br J Sports Med 52:716–722

    PubMed  Google Scholar 

  36. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284

    PubMed  Google Scholar 

  37. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 29:98–105

    PubMed  Google Scholar 

  38. Reinhardt KR, Hetsroni I, Marx RG (2010) Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am 41:249–262

    PubMed  Google Scholar 

  39. Snaebjornsson T, Hamrin Senorski E, Ayeni OR, Alentorn-Geli E, Krupic F, Norberg F et al (2017) Graft diameter as a predictor for revision anterior cruciate ligament reconstruction and KOOS and EQ-5D values: a cohort study from the Swedish National Knee ligament register based on 2240 patients. Am J Sports Med 45:2092–2097

    PubMed  Google Scholar 

  40. Spragg L, Chen J, Mirzayan R, Love R, Maletis G (2016) The effect of autologous hamstring graft diameter on the likelihood for revision of anterior cruciate ligament reconstruction. Am J Sports Med 44:1475–1481

    PubMed  Google Scholar 

  41. Tejwani SG, Prentice HA, Wyatt RWB Jr, Maletis GB (2018) Femoral tunnel drilling method: risk of reoperation and revision after anterior cruciate ligament reconstruction. Am J Sports Med 46:3378–3384

    PubMed  Google Scholar 

  42. Xu Y, Liu J, Kramer S, Martins C, Kato Y, Linde-Rosen M et al (2011) Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med 39:272–278

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kaiser Permanente orthopaedic surgeons who contribute to the Kaiser Permanente ACLR Registry as well as the Surgical Outcomes and Analysis Department staff, which coordinates registry operations. The authors also acknowledge William E. Burfeind, MAS, and Tom S. Huon, BS, for their ongoing support of the Kaiser Permanente ACLR Registry database and quality control management.

Funding

No outside funding was obtained.

Author information

Authors and Affiliations

Authors

Contributions

LMS, HAP, TTF, GBM, and RPC contributed to overall conception and design of the study. LMS, HAP, AM, TTF, GBM, and RPC took part in data acquisition. HAP completed the statistical analysis. LMS, HAP, and RPC drafted the manuscript. LMS, HAP, AM, TTF, GBM, and RPC reviewed the manuscript, contributed to revisions, gave approval of the final draft, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Rick P. Csintalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Kaiser Permanente Institutional Review Board (#5691) prior to commencement.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spragg, L.M., Prentice, H.A., Morris, A. et al. Femoral-tibial fixation affects risk of revision and reoperation after anterior cruciate ligament reconstruction using hamstring autograft. Knee Surg Sports Traumatol Arthrosc 27, 3518–3526 (2019). https://doi.org/10.1007/s00167-019-05431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05431-4

Keywords

Navigation