Skip to main content
Log in

Investigation of Stokes flow in a grooved channel using the spectral method

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Pressure-driven Newtonian fluid flow between grooved and flat surfaces is analysed with no-slip boundary conditions at walls. The effect of corrugation on the fluid flow is investigated using the mesh-free spectral method. The primary aim of the present work is to develop an asymptotic/semi-analytical theory for confined transverse flows to bridge the gap between the limits of thin and thick channels. The secondary aim is to calculate permeability with reference to the effect of wall corrugation (roughness) without the restriction of pattern amplitude. We performed mathematical modelling and evaluated the analytical solution for hydraulic permeability with respect to the flat channel. The Pad\(\acute{e}\) approximate is employed to improve the solution accuracy of an asymptotic model. The results elucidate that permeability always follows a decreasing trend with increasing pattern amplitude using the spectral approach at the long-wave and short-wave limits. The prediction of the spectral model is more accurate than the asymptotic-based model by Stroock et al. (Anal Chem 74(20):5306, 2002) and Pad\(\acute{e}\) approximate, regardless of the grooved depth and wavelength of the channel. The finite-element-based numerical simulation is also used to understand the usefulness of theoretical models. A very low computational time is required using the mesh-free spectral model as compared to the numerical study. The agreement between the present model and the fully resolved numerical results is gratifying. Regarding numerical values, we calculated the relative error for different theoretical models such as an asymptotic model, Pad\(\acute{e}\) approximate, and a mesh-free spectral model. The spectral model always predicts the maximum relative error as less than \(3 \%\), regardless of the large pattern amplitude and wavelength. In addition, the results of the molecular dynamic (MD) simulations by Guo et al. (Phys Rev Fluids 1(7):074102, 2016) and the theoretical model by Wang (Phys Fluids 15(5):1121, 2003) are found to be quantitatively compatible with the predictions of effective slip length from the spectral model in the thick channel limit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Stroock, A.D., Dertinger, S.K., Ajdari, A., Mezić, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)

    Article  Google Scholar 

  2. Ajdari, A.: Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys. Rev. E 65(1), 016301 (2001)

    Article  Google Scholar 

  3. Stroock, A.D., Whitesides, G.M.: Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res. 36(8), 597–604 (2003)

    Article  Google Scholar 

  4. Stott, S.L., Hsu, C.-H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, S.M., Shah, A.M., Smas, M.E., Korir, G.K.: Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. 107(43), 18392–18397 (2010)

    Article  Google Scholar 

  5. Dong, Y., Skelley, A.M., Merdek, K.D., Sprott, K.M., Jiang, C., Pierceall, W.E., Lin, J., Stocum, M., Carney, W.P., Smirnov, D.A.: Microfluidics and circulating tumor cells. J. Mol. Diagn. 15(2), 149–157 (2013)

    Article  Google Scholar 

  6. Huang, W., Bhullar, R.S., Fung, Y.C.: The surface-tension-driven flow of blood from a droplet into a capillary tube. J. Biomech. Eng. 123(5), 446–454 (2001)

    Article  Google Scholar 

  7. Kung, C., Chiu, C., Chen, C., Chang, C., Chu, C.: Blood flow driven by surface tension in a microchannel. Microfluid. Nanofluid. 6(5), 693–697 (2009)

    Article  Google Scholar 

  8. Ajdari, A.: Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys. Rev. E 65(1), 016301 (2001)

    Article  Google Scholar 

  9. Stroock, A.D., Dertinger, S.K., Whitesides, G.M., Ajdari, A.: Patterning flows using grooved surfaces. Anal. Chem. 74(20), 5306–5312 (2002)

    Article  Google Scholar 

  10. Dewangan, M.K., Datta, S.: Flow through microchannels with topographically patterned wall: a spectral theory for arbitrary groove depths. Eur. J. Mech. B/Fluids 70, 73–84 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dewangan, M.K., Datta, S.: Effective permeability tensor of confined flows with wall grooves of arbitrary shape. J. Fluid Mech. 891 (2020)

  12. Ghosal, S.: Lubrication theory for electroosmotic flow in a channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103–128 (2002)

    Article  Google Scholar 

  13. Goyal, V., Datta, S.: Effect of debye length scale surface features on electro-osmosis and its use to devise a novel electro-microfluidic separation. J. Appl. Phys. 132(19), 194702 (2022)

    Article  Google Scholar 

  14. Buren, M., Jian, Y., Chang, L.: Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J. Phys. D Appl. Phys. 47(42), 425501 (2014)

    Article  Google Scholar 

  15. Buren, M., Jian, Y.: Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophoresis 36(14), 1539–1548 (2015)

    Article  Google Scholar 

  16. Kamrin, K., Bazant, M.Z., Stone, H.A.: Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409–437 (2010)

    Article  MathSciNet  Google Scholar 

  17. Wang, C.: Shear flow over a wavy surface with partial slip. J. Fluids Eng. 132(8), 084503 (2010)

    Article  Google Scholar 

  18. Choudhary, J.N., Datta, S., Jain, S.: Effective slip in nanoscale flows through thin channels with sinusoidal patterns of wall wettability. Microfluid. Nanofluid. 18(5–6), 931–942 (2015)

    Article  Google Scholar 

  19. Bazant, M.Z., Vinogradova, O.I.: Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125–134 (2008)

    Article  MathSciNet  Google Scholar 

  20. Datta, S., Ghosal, S., Patankar, N.A.: Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Electrophoresis 27(3), 611–619 (2006)

    Article  Google Scholar 

  21. Feuillebois, F., Bazant, M.Z., Vinogradova, O.I.: Transverse flow in thin superhydrophobic channels. Phys. Rev. E 82, 055301 (2010)

    Article  Google Scholar 

  22. Wang, C.: On stokes slip flow through a transversely wavy channel. Mech. Res. Commun. 38(3), 249–254 (2011)

    Article  Google Scholar 

  23. Luchini, P.: Linearized no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349–367 (2013)

    Article  Google Scholar 

  24. Datta, S., Choudhary, J.N.: Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels. Fluid Dyn. Res. 45(5), 055502 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kumar, A., Datta, S., Kalyanasundaram, D.: Permeability and effective slip in confined flows transverse to wall slippage patterns. Phys. Fluids 28(8), 082002 (2016)

    Article  Google Scholar 

  26. Tavakol, B., Froehlicher, G., Holmes, D.P., Stone, H.A.: Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proceed. R. Soc. A Math. Phys. Eng. Sci. 473(2206), 20170234 (2017)

    MathSciNet  Google Scholar 

  27. Hocking, L.: A moving fluid interface on a rough surface. J. Fluid Mech. 76(4), 801–817 (1976)

    Article  Google Scholar 

  28. Einzel, D., Panzer, P., Liu, M.: Boundary condition for fluid flow: curved or rough surfaces. Phys. Rev. Lett. 64, 2269–2272 (1990)

    Article  Google Scholar 

  29. Richardson, S.: On the no-slip boundary condition. J. Fluid Mech. 59(4), 707–719 (1973)

    Article  Google Scholar 

  30. Guo, L., Chen, S., Robbins, M.O.: Effective slip boundary conditions for sinusoidally corrugated surfaces. Phys. Rev. Fluids 1(7), 074102 (2016)

    Article  Google Scholar 

  31. Wang, H., Iovenitti, P., Harvey, E., Masood, S.: Numerical investigation of mixing in microchannels with patterned grooves. J. Micromech. Microeng. 13(6), 801 (2003)

    Article  Google Scholar 

  32. Annepu, H., Sarkar, J., Basu, S.: Pattern formation in soft elastic films cast on periodically corrugated surfaces-a linear stability and finite element analysis. Modell. Simul. Mater. Sci. Eng. 22(5), 055003 (2014)

    Article  Google Scholar 

  33. Yutaka, A., Hiroshi, N., Faghri, M.: Heat transfer and pressure drop characteristics in a corrugated duct with rounded corners. Int. J. Heat Mass Transf. 31(6), 1237–1245 (1988)

    Article  Google Scholar 

  34. Li, C., Chen, T.: Simulation and optimization of chaotic micromixer using lattice Boltzmann method. Sens. Actuators B Chem. 106(2), 871–877 (2005)

    Article  Google Scholar 

  35. Pit, R., Hervet, H., Léger, L.: Friction and slip of a simple liquid at a solid surface. Tribol. Lett. 7(2–3), 147–152 (1999)

    Article  Google Scholar 

  36. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics (Scientific Computation). Springer, New York-Heidelberg-Berlin (1987)

    Google Scholar 

  37. Dewangan, M.K., Datta, S.: Flow through microchannels with textured walls: a theory for moderately slow variations. In: International Conference on Nanochannels, Microchannels, and Minichannels, vol. 51197, pp. 001–06001 (2018). American Society of Mechanical Engineers

  38. Van Dyke, M.: Slow variations in continuum mechanics. Adv. Appl. Mech. 25, 1–45 (1987)

    Article  MathSciNet  Google Scholar 

  39. Christov, I.C., Cognet, V., Shidhore, T.C., Stone, H.A.: Flow rate-pressure drop relation for deformable shallow microfluidic channels. J. Fluid Mech. 841, 267–286 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zimmerman, R., Kumar, S., Bodvarsson, G.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 28(4), 325–331 (1991)

    Article  Google Scholar 

  41. Dewangan, M.K., Ghosh, U., Le Borgne, T., Méheust, Y.: Coupled electrohydrodynamic transport in rough fractures: a generalized lubrication theory. J. Fluid Mech. 942, 11 (2022)

    Article  MathSciNet  Google Scholar 

  42. Wang, C.: Flow over a surface with parallel grooves. Phys. Fluids 15(5), 1114–1121 (2003)

    Article  Google Scholar 

  43. Feuillebois, F., Bazant, M.Z., Vinogradova, O.I.: Effective slip over superhydrophobic surfaces in thin channels. Phys. Rev. Lett. 102, 026001 (2009)

    Article  Google Scholar 

  44. Dewangan, M.K., Datta, S.: Improved asymptotic predictions for the effective slip over a corrugated topography. Appl. Math. Model. 72, 247–258 (2019)

    Article  MathSciNet  Google Scholar 

  45. Lauga, E., Brenner, M.P., Stone, H.A.: Microfludics: The no-slip boundary condition. In: Tropea, C., Yarin, A., Fouss, J.F. (eds.) Handbook of Experimental Fluid Mechanics, pp. 1219–1240. Springer, New York (2007). Chap. 19

  46. Maali, A., Pan, Y., Bhushan, B., Charlaix, E.: Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Phys. Rev. E 85, 066310 (2012)

    Article  Google Scholar 

  47. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  Google Scholar 

  48. Stroock, A.D., McGraw, G.J.: Investigation of the staggered herringbone mixer with a simple analytical model. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 362(1818), 971–986 (2004)

    Article  Google Scholar 

  49. Kwak, T.J., Nam, Y.G., Najera, M.A., Lee, S.W., Strickler, J.R., Chang, W.-J.: Convex grooves in staggered herringbone mixer improve mixing efficiency of laminar flow in microchannel. PLoS ONE 11(11), 0166068 (2016)

    Article  Google Scholar 

  50. Baker Jr, G.A., Graves-Morris, P., Baker, S.S.: Padé Approximants vol. 59. Cambridge University Press (1996)

Download references

Acknowledgements

The author would like to thank Dr Subhra Datta, Associate Professor, Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India, for continued interaction and technical discussions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MKD contributed to conceptualization, theoretical and numerical modelling, investigation, writing–original draft, reviewing and editing.

Corresponding author

Correspondence to Mainendra Kumar Dewangan.

Ethics declarations

Conflict of interest

This work has no competing interests that might be perceived to influence the results and/or discussion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The key coefficients and mathematical expressions

The coefficients of Sect. 2.1 are expressed as follows:

$$\begin{aligned} \zeta _1 =&\,e^{-n \epsilon \cos (X)}-(1+2nH) e^{-2nH} e^{n \epsilon \cos (X)} + 2n\epsilon \cos (X) e^{-2nH} e^{n\epsilon \cos (X)} \end{aligned}$$
(A1a)
$$\begin{aligned} \zeta _2 =&\,\epsilon \cos (X) e^{-n \epsilon \cos (X)} -2nH^2 e^{-2nH}e^{n\epsilon \cos (X)} \nonumber \\&+ \epsilon \cos (X)(-1+2nH) e^{-2nH}e^{n \epsilon \cos (X)} \end{aligned}$$
(A1b)
$$\begin{aligned} \zeta _3 =&\,(-1)^n I_n (n\epsilon )-(1+2nH)e^{-2nH}I_n (n\epsilon )+n\epsilon e^{-2nH}(I_{n-1}(n\epsilon )+I_{n+1}(n\epsilon ) \end{aligned}$$
(A2a)
$$\begin{aligned} \zeta _4 =&\,\frac{\epsilon }{2}\left( (-1)^{n-1}I_{n-1}(n\epsilon )+(-1)^{n+1}I_{n+1}(n\epsilon )\right) -2nH^2 e^{-2nH}I_n (n\epsilon )\nonumber \\&+\frac{\epsilon }{2}(-1+2nH)e^{-2nH}\left( I_{n-1}(n\epsilon )+I_{n+1}(n\epsilon )\right) \end{aligned}$$
(A2b)
$$\begin{aligned}{} & {} \zeta _5 = -ne^{-nY}-n(1+2nH)e^{-2nH+nY}+2ne^{-2nH}(e^{nY}+nYe^{nY}) \end{aligned}$$
(A3a)
$$\begin{aligned}{} & {} \zeta _6 = (e^{-nY}-nYe^{-nY})-2n^2H^2e^{-2nH}e^{nY}+(1+2nH)e^{-2nH}(e^{nY}+nYe^{nY}) \end{aligned}$$
(A3b)
$$\begin{aligned} \zeta _7 =&\, -n(-1)^n I_n(n\epsilon )-(n+2n^2H)e^{-2nH}I_n({n\epsilon })+2ne^{-2nH}I_n(n\epsilon )\nonumber \\&+n^2\epsilon e^{-2nH}(I_{n-1}(n\epsilon )+I_{n+1}(n\epsilon )) \end{aligned}$$
(A4a)
$$\begin{aligned} \zeta _8 =&\, (-1)^n I_n(n\epsilon )-\frac{n\epsilon }{2}((-1)^{n-1}I_{n-1}(n\epsilon )+(-1)^{n+1}I_{n+1}(n\epsilon )) \nonumber \\&- 2n^2H^2e^{-2nH}I_n(n\epsilon )+(-1+2nH)e^{-2nH}I_n(n\epsilon )+ \frac{(-n+2n^2H)\epsilon }{2}e^{-2nH}(I_{n-1}(n\epsilon ) \nonumber \\&+ I_{n+1}(n\epsilon )) \end{aligned}$$
(A4b)
$$\begin{aligned} \frac{1}{\pi }\int _{0}^{\pi }(\zeta _9) dX + \sum _{n=1}^\infty \frac{1}{\pi } \int _{0}^{\pi } C_{1n}\left( (\zeta _{10})+c_{2n}(\zeta _{11})\right) dX=0 \end{aligned}$$
(A5)
$$\begin{aligned} \zeta _9 =&\, -\frac{\epsilon ^3}{48H}{\text {cos}}((m-3)X)-\frac{3\epsilon ^3}{48H}{\text {cos}}((m-1)X) + \frac{\epsilon ^2}{16}{\text {cos}}((m-2)X)\nonumber \\&+C_{02}\left( \frac{\epsilon }{2}{\text {cos}}((m-1)X)-\frac{\epsilon ^2}{8H}{\text {cos}}((m-2)X)\right) \end{aligned}$$
(A6a)
$$\begin{aligned} \zeta _{10} =&\, \frac{1}{2}e^{-n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n)X+{\text {cos}}(m+n)X)-\left( \frac{1+2nH}{2}\right) e^{-2nH}e^{n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n)X\nonumber \\&+{\text {cos}}(m+n)X)+\frac{n\epsilon }{2}e^{-2nH}e^{n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n+1)+{\text {cos}}(m+n-1)X)\nonumber \\&+\frac{n\epsilon }{2}e^{-2nH}e^{n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n-1)X+{\text {cos}}(m+n+1)X) \end{aligned}$$
(A6b)
$$\begin{aligned} \zeta _{11} =&\, \frac{\epsilon }{4}e^{-n \epsilon {\text {cos}}(X)}({\text {cos}}(m-n+1)X+{\text {cos}}(m+n-1)X)+\frac{\epsilon }{4}e^{-n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n-1)X\nonumber \\&+{\text {cos}}(m+n+1)X)-nH^2 e^{-2nH}e^{n\epsilon {\text {cos}}(X)} ({\text {cos}}(m-n)X+{\text {cos}}(m+n)X)\nonumber \\&+\frac{\epsilon }{4}(-1+2nH)e^{-2nH}e^{n\epsilon {\text {cos}}(X)}({\text {cos}}(m-n+1)X+{\text {cos}}(m+n1)X)\nonumber \\&+\frac{\epsilon }{4}(-1+2nH)e^{-2nH}e^{n\epsilon {\text {cos}}(X)} ({\text {cos}}(m-n-1)X+{\text {cos}}(m+n+1)X) \end{aligned}$$
(A6c)
$$\begin{aligned}{} & {} \frac{1}{\pi }\int _{0}^{\pi }\left( -\frac{\epsilon ^2}{8H}\cos (m-2)X+\frac{\epsilon }{4} \cos (m-1)X+C_{02}\left( -\frac{\epsilon }{2H}\cos (m-1)X\right) \right) dX\nonumber \\{} & {} \quad + \sum _{n=1}^\infty \frac{1}{\pi }\int _{0}^{\pi }\left( C_{1n} (\zeta _{12})+C_{2n}\left( \zeta _{13}\right) \right) dX = 0 \end{aligned}$$
(A7)
$$\begin{aligned} \zeta _{12} =&\, -\frac{n}{2}((-1)^{m-n}I_{m-n}(n\epsilon )+(-1)^{m+n}I_{m-n}(n\epsilon ))-\left( \frac{n+2n^2H}{2}\right) e^{-2nH}(I_{m-n}(n\epsilon )\nonumber \\&+I_{m-n}(n\epsilon ))+ne^{-2nH}(I_{m-n}(n\epsilon )+I_{m+n} (n\epsilon ))+\frac{n\epsilon ^2}{2}e^{-2nH}(I_{m-n+1}(n\epsilon )\nonumber \\&+I_{m+n-1}(n\epsilon )+I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon )) \end{aligned}$$
(A8a)
$$\begin{aligned} \zeta _{13} =&\, \frac{1}{2}((-1)^{m-n}I_{m-n}(n\epsilon )+(-1)^{m+n}I_{m+n}(n\epsilon ))-\left( \frac{n\epsilon }{4}\right) (-1)^{(m-n+1)} (I_{m-n+1}(n\epsilon )\nonumber \\&+I_{m+n-1}(n\epsilon )+I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon )) -n^2H^2e^{-2nH}(I_{m-n}(n\epsilon )\nonumber \\&+ I_{m+n}(n\epsilon ))+\left( \frac{-1+2nH}{2}\right) e^{-2nH}(I_{m-n}(n\epsilon ) +I_{m+n}(n\epsilon )) \nonumber \\&+\left( \frac{-n+2n^2H}{4}\right) e^{-2nH}\epsilon (I_{m-n+1}(n\epsilon )+I_{m+n+1}(n\epsilon )+I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon )) \end{aligned}$$
(A8b)
$$\begin{aligned} \xi _{1}(H,\epsilon ,m,n) =&\, \sum _{n=1}^\infty ( C_{1n}(\xi _{1a}(H,\epsilon ,m,n))+ C_{2n}(\xi _{1b}(H,\epsilon ,m,n))) \end{aligned}$$
(A9a)
$$\begin{aligned} \xi _{1a}(H,\epsilon ,m,n) =&\, \frac{(-1)^{m-n}}{2}I_{m-n}(n\epsilon )+\frac{(-1)^{m+n}}{2}I_{m+n}(n\epsilon ) \nonumber \\&-\frac{1+2nH}{2}e^{-2nH}(I_{m-n}(n\epsilon ) +I_{m+n}(n\epsilon ))+\frac{n\epsilon }{2}e^{-2nH}(I_{m-n+1}(n\epsilon )+I_{m+n-1}(n\epsilon )) \nonumber \\&+ \frac{n\epsilon }{2}e^{-2nH}(I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon )) \end{aligned}$$
(A9b)
$$\begin{aligned} \xi _{1b}(H,\epsilon ,m,n) =&\, \frac{\epsilon }{4}(-1)^{m-n+1}I_{m-n+1}(n\epsilon )+\frac{\epsilon }{4}(-1)^{m+n-1}I_{m+n-1}(n\epsilon ) \nonumber \\&+\frac{\epsilon }{4}(-1)^{m-n-1} I_{m-n-1}(n\epsilon )+\frac{\epsilon }{4}(-1)^{m+n+1}I_{m+n+1}(n\epsilon )-nH^2 e^{-2nH}(I_{m-n}(n\epsilon ) \nonumber \\&+I_{m+n}(n\epsilon ))+\frac{\epsilon }{4}(-1+2nH)e^{-2nH} (I_{m-n+1}(n\epsilon )+I_{m+n-1}(n\epsilon )) \nonumber \\&+\frac{\epsilon }{4}(-1+2nH)e^{-2nH}\left( I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon )\right) \end{aligned}$$
(A9c)
$$\begin{aligned} \xi _{2} (H,\epsilon , m,n) =&\, \sum _{n=1}^\infty ( C_{1n}( \xi _{2a} (H,\epsilon , m,n)) + C_{2n} ( \xi _{2b} (H,\epsilon , m,n))) \end{aligned}$$
(A10a)
$$\begin{aligned} \xi _{2a} (H,\epsilon , m,n) =&\, -\frac{n}{2}\left( (-1)^{(m-n)} I_{m-n}(n\epsilon ) + (-1)^{(m+n)} I_{m+n}(n\epsilon ) \right) \nonumber \\&- \left( \frac{n+2n^2H}{2}\right) e^{-2nH}\left( I_{m-n}(n\epsilon )+I_{m+n}(n\epsilon )\right) \nonumber \\&+ne^{-2nH} \left( I_{m-n}(n\epsilon )+I_{m+n}(n\epsilon ) \right) \nonumber \\&+\left( \frac{n^2 \epsilon }{2}\right) e^{-2nH} \left( I_{m-n+1}(n\epsilon )+I_{m+n-1}(n\epsilon )+I_{m-n-1}(n\epsilon )+I_{m+n+1}(n\epsilon ) \right) \end{aligned}$$
(A10b)
$$\begin{aligned} \xi _{2b} (H,\epsilon , m,n) =&\, \frac{1}{2} \left( (-1)^{m-n} I_{m-n}(n\epsilon ) +(-1)^{m+n} I_{m+n}(n\epsilon ) \right) \nonumber \\&-\frac{n\epsilon }{4}((-1)^{m-n+1} I_{m-n+1}(n\epsilon ) +(-1)^{m+n-1} I_{m+n-1}(n\epsilon ) + (-1)^{m-n-1} I_{m-n-1}(n\epsilon )\nonumber \\&+ (-1)^{m+n+1} I_{m+n+1}(n\epsilon )) -n^2 H^2 e^{-2nH} \left( I_{m-n}(n\epsilon )+I_{m+n}(n\epsilon )\right) \nonumber \\&+\left( \frac{2nH-1}{2}\right) e^{-2nH}( I_{m-n}(n\epsilon ) +I_{m+n}(n\epsilon )) \nonumber \\&+\left( \frac{2n^2H-n}{4}\right) \epsilon e^{-2nH}\left( I_{m-n+1}(n\epsilon )+I_{m+n-1}(n\epsilon )+I_{m-n-1}(n\epsilon )I_{m+n+1}(n\epsilon ) \right) \end{aligned}$$
(A10c)

Appendix B: Asymptotic behaviour of the spectral coefficients

The coefficients of \(O(\epsilon ^4)\) appearing in Sect. 2.3 are expressed as follows:

$$\begin{aligned} C_{02} =&\, C_{021}\epsilon ^2 + C_{022}\epsilon ^4+O(\epsilon ^6) \end{aligned}$$
(B11a)
$$\begin{aligned} C_{021} =&\, \frac{I_{2}(H)}{I_{1}(H)} = -\frac{ \left( 2 H^2-2 H \sinh (2 H)+\cosh (2 H)-1\right) }{4 \left( 2 H^3+H-H \cosh (2 H)\right) } \end{aligned}$$
(B11b)
$$\begin{aligned} C_{022} =&\, \frac{I_{3}(H)}{I_{1}(H)} \end{aligned}$$
(B11c)
$$\begin{aligned} I_{1}(H) =&\, 32 H^2 \left( -2 H^2+\cosh (2 H)-1\right) ^2 \left( 8 H^2-\cosh (4 H)+1\right) \end{aligned}$$
(B11d)
$$\begin{aligned} I_{2}(H) =&\, -256 H^7+256 H^6 \sinh (2 H)-32 H^5+32 H^5 \cosh (4 H) \nonumber \\&+176 H^4 \sinh (2 H)+ 96 H^3-128 H^3 \cosh (2 H)+32 H^3 \cosh (4 H)\nonumber \\&+24 H^2 \sinh (2 H)+4 H^2 \sinh (8 H) -8 \left( 8 H^4+H^2\right) \sinh (4 H)-8(2 H^4+H^2) \sinh (6 H)\nonumber \\&+10 H-8 H \cosh (2 H)- 8 H \cosh (4 H)+8 H \cosh (6 H)-2 H \cosh (8 H) \end{aligned}$$
(B11e)
$$\begin{aligned} I_{3}(H) =&\, 64 H^6 \sinh (2 H)-112 H^5+508 H^4 \sinh (2 H)+360 H^3-20 H^3\cosh (6 H) \nonumber \\&-126 H^2\sinh (2 H)-3 H^2 \sinh (8 H)-8 \left( H^2+2\right) \left( 10 H^2+1\right) H \cosh (4 H)\nonumber \\&+2(6 H^4+5 H^2 +2)\sinh (6 H)-4 \left( 80 H^2+43\right) H^3\cosh (2 H) \nonumber \\&+ 2 (16 H^6+88 H^4+ 27 H^2+2) \sinh (4 H)+12 H-12 \sinh (2 H)-2 \sinh (8 H) \nonumber \\&+4 H \cosh (8 H) \end{aligned}$$
(B11f)
$$\begin{aligned}{} & {} C_{03} = C_{031}\epsilon ^2 + C_{032}\epsilon ^4+O(\epsilon ^6) \end{aligned}$$
(B12a)
$$\begin{aligned}{} & {} C_1 = C_{11}\epsilon + C_{12}, \hspace{8mm} C_2 = C_{21}\epsilon ^2 + O(\epsilon ^4) \epsilon ^3+O(\epsilon ^5) \end{aligned}$$
(B12b)

The coefficient \(C_{021}\) can be alternatively expressed as:

$$\begin{aligned} C_{021} = -\frac{ \left( 2 H^2-2 H \sinh (2 H)+\cosh (2 H)-1\right) }{4 \left( 2 H^3+H-H \cosh (2 H)\right) } \end{aligned}$$
(B13)

The functions required for the \(O(\epsilon ^4)\) model for permeability that appear in Eq. (34) are:

$$\begin{aligned}{} & {} F_1(H)=\frac{6 H \left( H^6+20 H^4+40 H^2+16\right) }{2 H^2-\cosh (2 H)+1} \end{aligned}$$
(B14a)
$$\begin{aligned}{} & {} F_2(H)= \frac{3 H^4 \left( 5 H^2+\left( H^2+1\right) \cosh (2 H)-1\right) }{2 H-\sinh (2 H)} \end{aligned}$$
(B14b)
$$\begin{aligned}{} & {} F_3(H)= \frac{3 \left( 5 \left( H^4+4 H^2+8\right) H^2+16\right) \sinh (2 H)}{2 H^2-\cosh (2 H)+1} \end{aligned}$$
(B14c)
$$\begin{aligned}{} & {} F_4(H)= \frac{3 \left( F_{4a}-\left( H^6+17 H^4+40 H^2+16\right) \cosh (2 H)-16\right) }{2 H+\sinh (2 H)} \end{aligned}$$
(B14d)
$$\begin{aligned}{} & {} F_{4a}(H) = -11 H^6-65 H^4-72 H^2 \end{aligned}$$
(B14e)
$$\begin{aligned}{} & {} F_5(H)= \frac{12 H^4 \left( H^2+2\right) \left( 6 H^3-\left( H^2+4\right) \sinh (2 H)+8 H\right) }{\left( -2 H^2+\cosh (2 H)-1\right) ^2} \end{aligned}$$
(B14f)

Appendix C: Improvement asymptotic estimates for hydraulic permeability using Padé approximant

Padé approximants are often accurate beyond the disc of convergence of the corresponding power series. The denominator of Padé approximants is instrumental in approximating the singularities of the function, thus removing convergence limitations inherent to power series [50]. The denominator and numerator of an (mn) Padè approximant are polynomials of order m and n, respectively, and the resultant approximant is \(O(\epsilon ^{(m+n)})\) accurate The \(O(\epsilon ^n)\) Taylor polynomial is replaced by their rational approximations using the Padé approximate, which is represented by Eq. (C15).

$$\begin{aligned} \hbox {Pad}\acute{\textrm{e}} (2M,2N) = \frac{\sum _{n=0}^M a_n \epsilon ^{2n}}{\sum _{n=0}^N b_n \epsilon ^{2n}} \end{aligned}$$
(C15)

As a result, its accuracy is \(O(\epsilon ^{2(M+N)})\). The dimensionless flow rate is presented in terms of Padé approximants (Eq. C16).

$$\begin{aligned} \frac{Q}{Q_0}= \hbox {Pad}\acute{\textrm{e}}(2M,2N) \end{aligned}$$
(C16)

The diagonal Padé approximants \(\hbox {Pad}\acute{\textrm{e}}(2M,2M)\) have \(O(\epsilon ^{2M})\) accuracy. With \(M=1\) for transverse flows (X-direction), the Padé approximants for different wavelengths are reported below:

$$\begin{aligned}{} & {} Pad\acute{e}(2,2)_{\lambda =1} = \frac{1+\frac{0.439451}{1.39545} \epsilon ^2}{1+\frac{1}{1.39545}\epsilon ^2}, \hspace{4mm} Pad\acute{e}(2,2)_{\lambda =5} = \frac{1-\frac{0.911114}{0.829266} \epsilon ^2}{1+\frac{1}{0.829266}\epsilon ^2} \end{aligned}$$
(C17)
$$\begin{aligned}{} & {} Pad\acute{e}(2,2)_{\lambda =10} = \frac{1-\frac{1.41558}{0.301929} \epsilon ^2}{1+\frac{1}{0.301929}\epsilon ^2}, \hspace{4mm} Pad\acute{e}(2,2)_{\lambda =15} = \frac{1-\frac{1.54808}{0.145616} \epsilon ^2}{1+\frac{1}{0.145616}\epsilon ^2} \end{aligned}$$
(C18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, M.K. Investigation of Stokes flow in a grooved channel using the spectral method. Theor. Comput. Fluid Dyn. 38, 39–59 (2024). https://doi.org/10.1007/s00162-023-00679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00679-6

Keywords

Navigation