Skip to main content
Log in

Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: structure and dynamics of a large-scale helium plume

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The physical characteristics and evolution of a large-scale helium plume are examined through a series of numerical simulations with increasing physical resolution using adaptive mesh refinement (AMR). The five simulations each model a 1-m-diameter circular helium plume exiting into a \((4~\hbox {m})^3\) domain and differ solely with respect to the smallest scales resolved using the AMR, spanning resolutions from 15.6 mm down to 0.976 mm. As the physical resolution becomes finer, the helium–air shear layer and subsequent Kelvin–Helmholtz instability are better resolved, leading to a shift in the observed plume structure and dynamics. In particular, a critical resolution is found between 3.91 and 1.95 mm, below which the mean statistics and frequency content of the plume are altered by the development of a Rayleigh–Taylor (RT) instability near the centerline in close proximity to the plume base. Comparisons are made with prior experimental and computational results, revealing that the presence of the RT instability leads to reduced centerline axial velocities and higher puffing frequencies than when the instability is absent. An analysis of velocity and scalar gradient quantities, and the dynamics of the vorticity in particular, show that gravitational torque associated with the RT instability is responsible for substantial vorticity production in the flow. The grid-converged simulations performed here indicate that very high spatial resolutions are required to accurately capture the near-field structure and dynamics of large-scale plumes, particularly with respect to the development of fundamental flow instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bastiaans, R.J.M., Rindt, C.C.M., Nieuwstadt, F.T.M., Van Steenhoven, A.A.: Direct and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a confined enclosure. Int. J. Heat Mass Transf. 43(13), 2375–2393 (2000)

    MATH  Google Scholar 

  2. Zhou, X., Luo, K.H., Williams, J.J.R.: Large-eddy simulation of a turbulent forced plume. Eur. J. Mech. B/Fluids 20(2), 233–254 (2001)

    MATH  Google Scholar 

  3. Zhou, X., Luo, K.H., Williams, J.J.R.: Study of density effects in turbulent buoyant jets using Large-Eddy simulation. Theor. Comput. Fluid Dyn. 15(2), 95–120 (2001)

    MATH  Google Scholar 

  4. DesJardin, P.E., O’Hern, T.J., Tieszen, S.R.: Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids 16(6), 1866–1883 (2004)

    MATH  Google Scholar 

  5. Worthy, J., Rubini, P.: A study of LES stress and flux models applied to a buoyant jet. Numer. Heat Transf. B Fundam. 48(3), 235–256 (2005)

    Google Scholar 

  6. Pham, M.V., Plourde, F., Doan, K.S.: Direct and large-Eddy simulations of a pure thermal plume. Phys. Fluids 19(12), 125103 (2007)

    MATH  Google Scholar 

  7. Chung, W., Devaud, C.B.: Buoyancy-corrected k-epsilon models and large Eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Meth. Fluids 58, 57–89 (2008)

    MATH  Google Scholar 

  8. Burton, G.C.: Large-Eddy Simulation of a Turbulent Helium–Air Plume Using the nLES Method, pp. 261–271. Center for Turbulence Research Annual Research Briefs, Stanford University and NASA-Ames Research Center, Stanford (2008)

    Google Scholar 

  9. Blanquart, G., Pitsch, H.: Large-Eddy Simulation of a Turbulent Buoyant Helium Plume, pp. 245–252. Center for Turbulence Research Annual Research Briefs, Stanford University and NASA-Ames Research Center, Stanford (2008)

    Google Scholar 

  10. Maragkos, G., Rauwoens, P., Merci, B.: Application of FDS and FireFOAM in large eddy simulations of a turbulent buoyant helium plume. Combust. Sci. Technol. 184(7–8), 1108–1120 (2012)

    Google Scholar 

  11. Maragkos, G., Rauwoens, P., Wang, Y., Merci, B.: Large Eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume. Flow Turbul. Combust. 90(3), 511–543 (2013)

    Google Scholar 

  12. Jatale, A., Smith, P.J., Thornock, J.N., Smith, S.T., Spinti, J.P., Hradisky, M.: Application of a verification, validation and uncertainty quantification framework to a turbulent Buoyant helium plume. Flow Turbul. Combust. 95(1), 143–168 (2015)

    Google Scholar 

  13. Brown, A., Bruns, M., Gollner, M., Hewson, J., Maragkos, G., Marshall, A., McDermott, R., Merci, B., Rogaume, T., Stoliarov, S., Torero, J., Trouve, A., Wang, Y., Weckman, E.: Proceedings of the first workshop organized by the IAFSS working group on measurement and computation of fire phenomena (MaCFP). Fire Saf. J. 101, 1–17 (2018)

    Google Scholar 

  14. Koo, H., Hewson, J.C., Domino, S.P., Knaus, R.C.: Model sensitivities in LES predictions of buoyant methane fire plumes. In: Proceedings of the Western States Section of the Combustion Institute (2017)

  15. Rouse, H., Yih, C.S., Humphreys, H.W.: Gravitational convection from a boundary source. Tellus 4(3), 201–210 (1952)

    Google Scholar 

  16. Morton, B.R., Taylor, G., Turner, J.S.: Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234(1196), 1–23 (1956)

    MathSciNet  MATH  Google Scholar 

  17. Wakitani, S.: Non-parallel-flow stability of a two-dimensional buoyant plume. J. Fluid Mech. 159, 241–258 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Dai, Z., Tseng, L.K., Faeth, G.M.: Structure of round, fully developed, Buoyant turbulent plumes. J. Heat Transf. 116(2), 409–417 (1994)

    Google Scholar 

  19. Shabbiri, A., George, W.K.: Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 1–32 (1994)

    Google Scholar 

  20. Sreenivas, K.R., Prasad, A.K.: Vortex-dynamics model for entrainment in jets and plumes. Phys. Fluids 12(8), 2101–2107 (2000)

    MATH  Google Scholar 

  21. Hunt, G.R., Kaye, N.G.: Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377–396 (2001)

    MATH  Google Scholar 

  22. Fanneløp, T.K., Webber, D.M.: On buoyant plumes rising from area sources in a calm environment. J. Fluid Mech. 497, 319–334 (2003)

    MATH  Google Scholar 

  23. Whittaker, R.J., Lister, J.R.: Steady axisymmetric creeping plumes above a planar boundary. Part 2. A distributed source. J. Fluid Mech. 567, 379–397 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Nam, S., Bill, R.G.: Numerical simulation of thermal plumes. Fire Saf. J. 21(3), 231–256 (1993)

    Google Scholar 

  25. Pham, M.V., Plourde, F., Doan Kim, S.: Effect of swirl on pure turbulent thermal plume development. Int. J. Heat Fluid Flow 27(3), 502–513 (2006)

    Google Scholar 

  26. Pham, M.V., Plourde, F., Doan Kim, S.: Three-dimensional characterization of a pure thermal plume. J. Heat Transf. 127(6), 624–636 (2005)

    Google Scholar 

  27. Morton, B.R.: Forced plumes. J. Fluid Mech. 5(1), 151–163 (1959)

    MathSciNet  MATH  Google Scholar 

  28. Mollendorf, J.C., Gebhart, B.: An experimental and numerical study of the viscous stability of a round laminar vertical jet with and without thermal buoyancy for symmetric and asymmetric disturbances. J. Fluid Mech. 61(2), 367–399 (1973)

    MATH  Google Scholar 

  29. Papanicolaou, P.N., John List, E.: Statistical and spectral properties of tracer concentration in round buoyant jets. Int. J. Heat Mass Transf. 30(10), 2059–2071 (1987)

    Google Scholar 

  30. Papanicolaou, P.N., John List, E.: Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341–391 (1988)

    Google Scholar 

  31. Kyle, D.M., Sreenivasan, K.R.: The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619–664 (1993)

    Google Scholar 

  32. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. 246, 225–247 (1993)

    Google Scholar 

  33. Ai, J., Law, A.W.K., Yu, S.C.M.: On Boussinesq and non-Boussinesq starting forced plumes. J. Fluid Mech. 558, 357–386 (2006)

    MATH  Google Scholar 

  34. Soteriou, M.C., Dong, Y., Cetegen, B.M.: Lagrangian simulation of the unsteady near field dynamics of planar buoyant plumes. Phys. Fluids 14(9), 3118–3140 (2002)

    MATH  Google Scholar 

  35. Cetegen, B.M., Kasper, K.D.: Experiments on the oscillatory behavior of buoyant plumes of helium and helium-air mixtures. Phys. Fluids 8(11), 2974–2984 (1996)

    Google Scholar 

  36. Cetegen, B.M.: Behavior of naturally unstable and periodically forced axisymmetric buoyant plumes of helium and helium-air mixtures. Phys. Fluids 9(12), 3742–3752 (1997)

    Google Scholar 

  37. Cetegen, B.M.: Measurements of instantaneous velocity field of a non-reacting pulsating buoyant plume by particle image velocimetry. Combust. Sci. Technol. 123(1–6), 377–387 (1997)

    Google Scholar 

  38. Cetegen, B.M., Dong, Y., Soteriou, M.C.: Experiments on stability and oscillatory behavior of planar buoyant plumes. Phys. Fluids 10(7), 1658–1665 (1998)

    Google Scholar 

  39. Becker, H.A., Massaro, T.A.: Vortex evolution in a round jet. J. Fluid Mech. 31(3), 435–448 (1968)

    Google Scholar 

  40. Gebhart, B.: Instability, transition, and turbulence in buoyancy induced flows. Annu. Rev. Fluid Mech. 5, 219–246 (1973)

    MATH  Google Scholar 

  41. George, W.K., Alpert, R.L., Tamanini, F.: Turbulence measurements in an axisymmetric buoyant plume. Int. J. Heat Mass Transf. 20(11), 1145–1154 (1977)

    Google Scholar 

  42. Kaye, N.B., Linden, P.F.: Coalescing axisymmetric turbulent plumes. J. Fluid Mech. 502, 41–63 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Morton, B.R.: Modeling fire plumes. Symp. (Int.) Combust. 10(1), 973–982 (1965)

    Google Scholar 

  44. Zukoski, E.E., Kubota, T., Cetegen, B.: Entrainment in fire plumes. Fire Saf. J. 3(3), 107–121 (1981)

    Google Scholar 

  45. Zukoski, E.E., Cetegen, B.M., Kubota, T.: Visible structure of Buoyant diffusion flames. Symp. (Int.) Combust. 20(1), 361–366 (1985)

    Google Scholar 

  46. Weckman, E.J., Sobiesiak, A.: The oscillatory behaviour of medium-scale pool fires. Symp. (Int.) Combust. 22(1), 1299–1310 (1989)

    Google Scholar 

  47. Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93(1–2), 157–184 (1993)

    Google Scholar 

  48. Lingens, A., Reeker, M., Schreiber, M.: Instability of buoyant diffusion flames. Exp. Fluids 20(4), 241–248 (1996)

    Google Scholar 

  49. McGrattan, K.B., Baum, H.R., Rehm, R.G.: Numerical simulation of smoke plumes from large oil fires. Atmos. Environ. 30(24), 4125–4136 (1996)

    Google Scholar 

  50. Desjardin, P.E., Frankel, S.H.: Two-dimensional large Eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene-air turbulent jet flame. Combust. Flame 119(1–2), 121–132 (1999)

    Google Scholar 

  51. Annarumma, M.O., Most, J.M., Joulain, P.: On the numerical modeling of buoyancy-dominated turbulent vertical diffusion flames. Combust. Flame 85(3–4), 403–415 (1991)

    Google Scholar 

  52. Hamins, A., Yang, J.C., Kashiwagi, T.: An experimental investigation of the pulsation frequency of flames. Symp. (Int.) Combust. 24(1), 1695–1702 (1992)

    Google Scholar 

  53. Xin, Y., Gore, J., Mcgrattan, K.B., Rehm, R.G., Baum, H.R.: Large Eddy simulation of Buoyant turbulent pool fires. Proc. Combust. Inst. 29(1), 259–266 (2002)

    Google Scholar 

  54. Jiang, X., Luo, K.H.: Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects. Combust. Flame 133(1–2), 29–45 (2003)

    Google Scholar 

  55. Zhou, X., Luo, K.H., Williams, J.J.R.: Vortex dynamics in spatio-temporal development of reacting plumes. Combust. Flame 129(1–2), 11–29 (2002)

    Google Scholar 

  56. Tieszen, S.R., Domino, S.P., Black, A.R.: Validation of a simple turbulence model suitable for closure of temporally- filtered Navier–Stokes equations using a helium plume. Sandia report (2005)

  57. O’Hern, T.J., Weckman, E.J., Gerhart, A.L., Tieszen, S.R., Schefer, R.W.: Experimental study of a turbulent Buoyant helium plume. J. Fluid Mech. 544, 143–171 (2005)

    MATH  Google Scholar 

  58. Christopher, J.D., Wimer, N.T., Lapointe, C., Hayden, T.R.S., Grooms, I., Rieker, G.B., Hamlington, P.E.: Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation. Phys. Rev. Fluids 3(104602), 1–16 (2018)

    Google Scholar 

  59. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)

    MathSciNet  MATH  Google Scholar 

  60. Saltzman, J.: An unsplit 3D upwind method for hyperbolic conservation laws. J. Comput. Phys. 115, 153–168 (1994)

    MathSciNet  MATH  Google Scholar 

  61. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142(1), 1–46 (1998)

    MathSciNet  MATH  Google Scholar 

  62. Day, M.S., Bell, J.B.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4(4), 535–556 (2000)

    MATH  Google Scholar 

  63. Bell, J.B., Day, M.S., Shepherd, I.G., Johnson, M.R., Cheng, R.K., Grcar, J.F., Beckner, V.E., Lijewski, M.J.: Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Nat. Acad. Sci. USA 102(29), 10006–10011 (2005)

    Google Scholar 

  64. Nonaka, A., Bell, J.B., Day, M.S., Gilet, C., Almgren, A.S., Minion, M.L.: A deferred correction coupling strategy for low Mach number flow with complex chemistry. Combust. Theor. Model. 16(6), 1053–1088 (2012)

    Google Scholar 

  65. Pazner, W.E., Nonaka, A., Bell, J.B., Day, M.S., Minion, M.L.: A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry. Combust. Theor. Model. 20(3), 521–547 (2016)

    MathSciNet  Google Scholar 

  66. Nonaka, A., Day, M.S., Bell, J.B.: A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration. Combust. Theor. Model. 22(1), 156–184 (2018)

    MathSciNet  Google Scholar 

  67. Ern, A., Giovangigli, V.: EGlib: A general-purpose fortran library for multicomponent transport property evaluation. Manual of EGlib version 3 (2004)

  68. CHEMKIN 10112 Reaction Design, San Diego (2011)

  69. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    MathSciNet  MATH  Google Scholar 

  70. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M., Friesen, B., Gott, K., Graves, D., Katz, M., Myers, A., Nguyen, T., Nonaka, A., Rosso, M., Williams, S., Zingale, M.: AMReX: a framework for block-structured adaptive mesh refinement. J. Open Source Softw. 4(37), 1370 (2019)

    Google Scholar 

  71. Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)

    MATH  Google Scholar 

  72. Aspden, A.J., Day, M.S., Bell, J.B.: Lewis number effects in distributed flames. Proc. Combust. Inst. 35, 1321–1329 (2015)

    Google Scholar 

  73. Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)

    Google Scholar 

  74. Aspden, A.J., Day, M.S., Bell, J.B.: Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 166, 266–283 (2016)

    Google Scholar 

  75. Aspden, A.J., Bell, J.B., Day, M.S., Egolfopoulos, F.N.: Turbulence-flame interactions in lean premixed dodecane flames. Proc. Combust. Inst. 36(2), 2005–2016 (2017)

    Google Scholar 

  76. Aspden, A.J.: A numerical study of diffusive effects in turbulent lean premixed hydrogen flames. Proc. Combust. Inst. 36(2), 1997–2004 (2017)

    Google Scholar 

  77. Wieland, S.A., Hamlington, P.E., Reckinger, S.J., Livescu, D.: Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability. Phys. Rev. Fluids 4, 093905 (2019)

    Google Scholar 

  78. Mueschke, N.J., Schilling, O.: Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data. Phys. Fluids 21, 014106 (2009)

    MATH  Google Scholar 

  79. Ramaprabhu, P., Dimonte, G., Young, Y.-N., Calder, A.C., Fryxell, B.: Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem. Phys. Rev. E 74, 066308 (2006)

    MathSciNet  Google Scholar 

  80. Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H., Jayaraj, J.: The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids 24, 074107 (2012)

    Google Scholar 

  81. Wei, T., Livescu, D.: Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E 86, 046405 (2012)

    Google Scholar 

  82. Bian, X., Aluie, H., Zhao, D., Zhang, H., Livescu, D.: Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity (2019). arXiv:1910.03663

  83. Nichols, J.W., Schmid, P.J., Riley, J.J.: Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341–376 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Yuan, T., Durox, D., Villermaux, E.: An analogue study for flame flickering. Exp. Fluids 17(5), 337–349 (1994)

    Google Scholar 

  85. Moreno-Boza, D., Coenen, W., Carpio, J., Sánchez, A.L., Williams, F.A.: On the critical conditions for pool-fire puffing. Combust. Flame 192, 426–438 (2018)

    Google Scholar 

  86. Bharadwaj, K.K., Das, D.: Global instability analysis and experiments on Buoyant plumes. J. Fluid Mech. 832, 97–145 (2017)

    Google Scholar 

  87. Bharadwaj, K.K., Das, D.: Puffing in planar buoyant plumes: BiGlobal instability analysis and experiments. J. Fluid Mech. 863, 817–849 (2019)

    Google Scholar 

  88. Chakravarthy, R.V.K., Lesshafft, L., Huerre, P.: Global stability of Buoyant jets and plumes. J. Fluid Mech. 835, 654–673 (2018)

    MathSciNet  MATH  Google Scholar 

  89. Wimer, N.T., Lapointe, C., Christopher, J.D., Nigam, S.P., Hayden, T.R.S., Upadhye, A., Strobel, M., Rieker, G.B., Hamlington, P.E.: Scaling of the puffing Strouhal number for Buoyant jets and plumes. J. Fluid Mech. 895, A26 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Helpful discussions with Drs. Andrew Nonaka, Alexei Poludnenko, and Chad Hoffman are gratefully acknowledged. NTW, ASM, JFG, JWD, GBR, and PEH were supported, in part, by the Strategic Environmental Research and Development Program under Grant W912HQ-16-C-0026. MAM and CL were supported by the National Science Foundation Graduate Fellowship Program. NTW, CL, GBR, and PEH also acknowledge gift support from the 3M Company. Computing resources were provided by DoD HPCMP under a Frontier Project award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Hamlington.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimer, N.T., Day, M.S., Lapointe, C. et al. Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: structure and dynamics of a large-scale helium plume. Theor. Comput. Fluid Dyn. 35, 61–91 (2021). https://doi.org/10.1007/s00162-020-00548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00548-6

Keywords

Navigation