Skip to main content
Log in

Stability and modal analysis of shock/boundary layer interactions

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036–1040, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizard, F., Pirozzoli, S., Bernardini, M., Grasso, F.: Optimal transient growth in compressible turbulent boundary layers. J. Fluid Mech. 770, 124–155 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aubard, G., Gloerfelt, X., Robinet, J.: Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51, 2395–2409 (2013)

    Article  Google Scholar 

  3. Beresh, S., Clemens, N., Dolling, D.: Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40, 2412–2422 (2002)

    Article  Google Scholar 

  4. Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D., Eaton, J.: Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 5–62 (2014)

    Article  Google Scholar 

  5. Clemens, N., Narayanaswamy, V.: Shock/turbulent boundary layer interactions: Review of recent work on sources of unsteadiness. In: 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, aIAA Paper 2009-3710 (2009)

  6. Clemens, N., Narayanaswamy, V.: Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crouch, J., Garbaruk, A., Magidov, D.: Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224, 924–940 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Délery, J., Dussauge, J.P.: Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19, 453–468 (2009)

    Article  MATH  Google Scholar 

  9. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39, 1517–1530 (2001)

    Article  Google Scholar 

  10. Eléna, M., Lacharme, J.: Experimental study of a supersonic turbulent boundary layer using a laser doppler anemometer. J. Méc. Théor. Appl. 7, 175–190 (1988)

    Google Scholar 

  11. Erengil, M., Dolling, D.: Correlation of separation shock motion with pressure fluctuations in the incoming boundary layer. AIAA J. 29, 1868–1877 (1991)

    Article  Google Scholar 

  12. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  MATH  Google Scholar 

  13. Garnier, E., Sagaut, P., Deville, M.: Large-Eddy simulation of shock/boundary-layer interaction. AIAA J. 40, 1935–1944 (2002)

    Article  Google Scholar 

  14. Grilli, M., Schmid, P., Hickel, S., Adams, N.: Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 16–28 (2012)

    Article  MATH  Google Scholar 

  15. Hadjadj, A., Larsson, J., Morgan, B., Nichols, J., Lele, S.: Large-eddy simulation of shock/boundary-layer interaction. In: Proceedings of the 2010 CTR Summer Program, Stanford University (2010)

  16. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  Google Scholar 

  17. Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations. J. Comput. Phys. 227, 1676–1700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Konno, K., Ohmachi, T.: Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228–241 (1998)

    Google Scholar 

  19. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  20. Lele, S.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Fluid Mech. 140, 233–258 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Mani, A.: Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment. J. Comput. Phys. 231, 704–716 (2012)

    Article  MATH  Google Scholar 

  23. Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746–2757 (1991)

    Article  MATH  Google Scholar 

  24. Morgan, B., Duraisamy, K., Nguyen, N., Kawai, S., Lele, S.: Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729, 231–284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nichols, J., Lele, S.: Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225–241 (2011)

    Article  MATH  Google Scholar 

  26. Piponniau, S., Dussauge, J., Debiève, J., Dupont, P.: A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87–108 (2009)

    Article  MATH  Google Scholar 

  27. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pirozzoli, S., Bernardini, M.: Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49, 1307–1312 (2011)

    Article  Google Scholar 

  29. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at \(M=2.25\). Phys. Fluids 18, 065113 (2006)

    Article  Google Scholar 

  30. Pirozzoli, S., Bernardini, M., Grasso, F.: Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)

    Article  MATH  Google Scholar 

  31. Pirozzoli, S., Larsson, J., Nichols, J., Bernardini, M., Morgan, B., Lele, S.: Analysis of unsteady effects in shock/boundary layer interactions. In: Proceedings of the 2010 CTR Summer Program, Stanford University (2010)

  32. Plotkin, K.: Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13, 1036–1040 (1975)

    Article  Google Scholar 

  33. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Priebe, S., Wu, M., Martin, M.P.: Direct numerical simulation of a reflected shock wave/turbulent boundary layer interaction. AIAA J. 47(5), 1173–1184 (2009)

    Article  Google Scholar 

  35. Reau, N., Tumin, A.: On harmonic perturbations in a turbulent mixing layer. Eur. J. Mech. B Fluids 21, 143–155 (2002)

    Article  MATH  Google Scholar 

  36. Reynolds, W.C., Hussain, A.K.M.F.: The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263–288 (1972)

    Article  Google Scholar 

  37. Robinet, J.C.: Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rowley, C., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sansica, A., Sandham, N.D., Hu, Z.: Forced response of a laminar shock-induced separation bubble. Phys. Fluids 26(9), 093601 (2014)

    Article  Google Scholar 

  40. Sayadi, T., Hamman, C., Schmid, P.: Parallel QR algorithm for data-driven decompositions. In: Proceedings of the 2010 CTR Summer Program, Stanford University (2014)

  41. Schmid, P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simens, M., Jiménez, J., Hoyas, S., Mizuno, Y.: A high-resolution code for a turbulent boundary layers. J. Comput. Phys. 228, 4218–4231 (2009)

    Article  MATH  Google Scholar 

  43. Souverein, L., Dupont, P., Debiève, J.F., Dussauge, J.P., van Oudheusden, B.W., Scarano, F.: Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48, 1480–1493 (2010)

    Article  Google Scholar 

  44. Touber, E., Sandham, N.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79–107 (2009)

    Article  MATH  Google Scholar 

  45. Touber, E., Sandham, N.: Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer. J. Fluid Mech. 671, 417–465 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Larsson.

Additional information

Communicated by Dr. M.R. Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichols, J.W., Larsson, J., Bernardini, M. et al. Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31, 33–50 (2017). https://doi.org/10.1007/s00162-016-0397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0397-6

Keywords

Navigation