Skip to main content
Log in

Modelling of elastic heat conductors via objective rate equations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A thermoelastic solid is modelled by letting the heat flux be given by a rate equation. As any constitutive property, the rate equation has to be objective and consistent with thermodynamics. Accordingly, firstly a theorem is given that characterizes objective time derivatives. This allows the known objective time derivatives to be viewed as particular elements of the set so specified. Next the thermodynamic consistency is established for the constitutive models involving objective time derivatives within appropriate sets. It emerges that the thermodynamic consistency holds provided the stress contains additively terms quadratic in the heat flux vector in a form that is related to the derivative adopted for the rate of the heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  2. Morro, A.: Temperature waves in rigid materials with memory. Meccanica 12, 73–77 (1977)

    Article  ADS  Google Scholar 

  3. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  4. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems. Springer, New York (2016)

    Book  Google Scholar 

  5. Morro, A., Ruggeri, T.: Non-equilibrium properties of solids obtained from second-sound measurements. J. Phys. C Solid State Phys. 21, 1743–1752 (1988)

    Article  ADS  Google Scholar 

  6. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    ADS  MATH  Google Scholar 

  7. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)

    Article  ADS  Google Scholar 

  8. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  Google Scholar 

  9. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)

    Article  ADS  Google Scholar 

  10. Sellitto, A., Tibullo, V., Dong, Y.: Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers. Contin. Mech. Thermodyn. 29, 411–428 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1965)

    Google Scholar 

  12. Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  Google Scholar 

  13. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MathSciNet  Google Scholar 

  14. Noll, W.: Five contributions to natural philosophy, published on Noll’s website (2004) http://www.math.cmu.edu/~wn0g/noll/FC.pdf

  15. Müller, I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)

    Article  MathSciNet  Google Scholar 

  16. Muschik, W.: Objectivity and frame indifference revisited. Arch. Mech. 50, 541–547 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Muschik, W.: Is the heat flux density really non-objective? A glance back, 40 years later. Cont. Mech. Thermodyn. 24, 333–337 (2012)

    Article  MathSciNet  Google Scholar 

  18. Matolcsi, T., Ván, P.: Can material time derivative be objective? Phys. Lett A 353, 109–112 (2006)

    Article  ADS  Google Scholar 

  19. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  20. Green, A.E., Naghdi, P.M.: A general theory of an elastic-plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  Google Scholar 

  21. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. A 200, 523–541 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  22. Truesdell, C.A.: The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. 8, 123–132 (1955)

    Article  MathSciNet  Google Scholar 

  23. Müller, I., Ruggeri, T.: Extended Thermodynamics, p. 37. Springer, New York (1993)

    Book  Google Scholar 

  24. d’Inverno, R.: Introducing Einstein’s Relativity. Oxford University Press, Oxford (1992). §6.2

    MATH  Google Scholar 

  25. Christov, C.I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Comm. 36, 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  26. Fabrizio, M., Lazzari, B., Morro, A.: Thermodynamics of nonlocal electromagnetism and superconductivity. Math. Mod. Methods Appl. Sci. 13, 945–969 (2003)

    Article  MathSciNet  Google Scholar 

  27. Vàn, P., Berezovski, A., Papenfuss, C.: Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 26, 403–420 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Morro, A.: Thermodynamic consistency of objective rate equations. Mech. Res. Commun. 84, 72–76 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Preliminary results on this topic were delivered at JETC 2017, Budapest. The author is grateful to the reviewers for constructive criticism on the objectivity principle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Morro.

Additional information

Communicated by Attila R. Imre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morro, A. Modelling of elastic heat conductors via objective rate equations. Continuum Mech. Thermodyn. 30, 1231–1243 (2018). https://doi.org/10.1007/s00161-017-0617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0617-3

Keywords

Navigation