Skip to main content
Log in

Modeling the rubbing contact in honeycomb seals

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor–stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus Manuals. Dassault Systèmes Simulia Corporation, Version 6.13 (2013)

  2. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  ADS  Google Scholar 

  3. Bill, R.: Wear of seal material used in aircraft propulsion systems. Wear 59, 165–189 (1980)

    Article  Google Scholar 

  4. Caruso, S., Imbrogno, S., Rotella, G., Ciaran, M.I., Arrazola, P.J., Filice, L., Umbrello, D.: Numerical simulation of surface modification during machining of nickelbased superalloy. Proc. CIRP 31, 130–135 (2015)

    Article  Google Scholar 

  5. Deevi, S.C., Sikka, V.K.: Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4(5), 357–375 (1996)

    Article  Google Scholar 

  6. Emery, A., Wolak, J., Etemad, S., Choi, S.: An experimental investigation to rubbing at the blade–seal aircraft compressor. Wear 91, 117–130 (1983)

    Article  Google Scholar 

  7. Frontán, J., Zhang, Y., Dao, M., Lu, J., Gálvez, F., Jérusalem, A.: Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel. Acta Mater. 60, 1353–1367 (2012)

    Article  Google Scholar 

  8. Gardner, L., Insausti, A., Ng, K.T., Ashraf, M.: Elevated temperature material properties of stainless steel alloys. J. Constr. Steel Res. 66(5), 634–647 (2010)

    Article  Google Scholar 

  9. Ghasripoor, F., Turnquist, N.A., Kowalczyk, M., Couture, B.: Wear prediction of strip seals through conductance. ASME. Turbo Expo 2004: Power for Land, Sea, and Air 4, 331–337 (2004)

  10. Grant, B., Preuss, M., Withers, P.J., Baxter, G., Rowlson, M.: Finite element process modelling of inertia friction welding advanced nickel-based superalloy. Mater. Sci. Eng. A 513–514, 366–375 (2009)

    Article  Google Scholar 

  11. Hancock, J., Mackenzie, A.: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 24(2–3), 147–160 (1976)

    Article  ADS  Google Scholar 

  12. Haynes International, I.: Hastelloy X alloy (uns n06002). High-temperature alloys. http://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HASTELLOY-X-alloy (1997). Accessed 1 June 2017

  13. Haynes International, I.: Haynes 214 alloy (uns n07214). High-temperature alloys. http://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/haynes-214-alloy (2008). Accessed 1 June 2017

  14. Hegadekatte, V., Kurzenhäuser, S., Huber, N., Kraft, O.: A predictive modeling scheme for wear in tribometers. Tribol. Int. 41(11), 1020–1031 (2008)

    Article  Google Scholar 

  15. Jafarian, F., Ciaran, M.I., Umbrello, D., Arrazola, P.J., Filice, L., Amirabadi, H.: Finite element simulation of machining inconel 718 alloy including microstructure changes. Int. J. Mech. Sci. 88, 110–121 (2014)

    Article  Google Scholar 

  16. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  17. Kalpakjian, S., Schmid, S.R., Werner, E.: Werkstofftechnik, 5th edn. Pearson Studium, München (2011)

    Google Scholar 

  18. Kennedy, F.E.: Thermomechanical phenomena in high speed rubbing. Wear 59(1), 149–163 (1980)

    Article  Google Scholar 

  19. Marscher, W.D.: A phenomenological model of abradable wear in high performance turbomachinery. Wear 59(1), 191–211 (1980)

    Article  Google Scholar 

  20. Mohr, D., Doyoyo, M.: Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb. Int. J. Solids Struct. 41, 3353–3377 (2004)

    Article  MATH  Google Scholar 

  21. Mohr, D., Doyoyo, M.: Large plastic deformation of metallic honeycomb: orthotropic rate-independent constitutive model. Int. J. Solids Struct. 41, 4435–4456 (2004)

    Article  MATH  Google Scholar 

  22. Mulvihill, D.M., Kartal, M.E., Nowell, D., Hills, D.A.: An elastic-plastic asperity interaction model for sliding friction. Tribol. Int. 44, 1679–1694 (2011)

    Article  Google Scholar 

  23. Orowan, E.: The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng. 150, 140–167 (1943)

    Article  Google Scholar 

  24. Pataky, G.J., Sehitoglu, H., Maier, H.J.: High temperature fatigue crack growth of haynes 230. Mater. Charact. 75, 69–78 (2013)

    Article  Google Scholar 

  25. Pychynski, T., Höfler, C., Bauer, H.J.: Experimental study on the friction contact between a labyrinth seal fin and a honeycomb stator. J. Eng. Gas Turbines Power 138(6), 062501/1-9 (2016)

  26. Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  27. Rathmann, U., Olmes, S., Simeon, A.: Sealing technology: rub test rig for abrasive/abradable systems. ASME Turbo Expo 5, 223–228 (2007)

    Google Scholar 

  28. Reichert, S., Lorentz, B., Heldmaier, S., Albers, A.: Wear simulation in non-lubricated and mixed lubricated contacts taking into account the microscale roughness. Tribol. Int. 100, 272–279 (2016)

    Article  Google Scholar 

  29. Sakthivel, T., Laha, K., Nandagopal, M., Chandravathi, K.S., Parameswaran, P., Selvi, S.P., Mathew, M., Mannan, S.K.: Effect of temperature and strain rate on serrated flow behaviour of hastelloy x. Mater. Sci. Eng. A 534, 580–587 (2012)

    Article  Google Scholar 

  30. Shaw, M.C.: The role of friction in deformation processing. Wear 6, 140–458 (1963)

    Article  Google Scholar 

  31. Shaw, M.C., Ber, A., Mamin, P.A.: Friction characteristics of sliding surfaces undergoing subsurface plastic flow. J. Basic Eng. 82, 342–346 (1960)

    Article  Google Scholar 

  32. Smarsly, W., Zheng, N., Buchheim, C., Nindel, C., Silvestro, C., Sporer, D., Tuffs, M., Schreiber, K., Bomba, C.L., Anderson, O., Goehler, H., Simms, N., McColvin, G.: Advanced high temperature turbine seals materials and designs. Mater. Sci. Forum 492–493, 21–26 (2005)

    Article  Google Scholar 

  33. Sporer, D.R., Shiembob, L.T. (eds.): Alloy selection for honeycomb gas path seal systems, GT2004-53115 (2004)

  34. Wriggers, P.: Comput. Contact Mech., 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

Download references

Acknowledgements

This work is part of the research project WE 2351/14–1, funded by the DFG (Deutsche Forschungsgemeinschaft). We would like to thank MTU Aero Engines for their technical input and the constructive cooperation, given by Dr. Beate Schleif.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fischer.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, T., Welzenbach, S., Meier, F. et al. Modeling the rubbing contact in honeycomb seals. Continuum Mech. Thermodyn. 30, 381–395 (2018). https://doi.org/10.1007/s00161-017-0608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0608-4

Keywords

Navigation