Skip to main content
Log in

An initial boundary value problem for modeling a piezoelectric dipolar body

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study deals with the first initial boundary value problem in elasticity of piezoelectric dipolar bodies. We consider the most general case of an anisotropic and inhomogeneous elastic body having a dipolar structure. For two different types of restrictions imposed on the problem data, we prove two results regarding the uniqueness of solution, by using a different but accessible method. Then, the mixed problem is transformed in a temporally evolutionary equation on a Hilbert space, conveniently constructed based on the problem data. With the help of a known result from the theory of semigroups of operators, the existence and uniqueness of the weak solution for this equation are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MATH  Google Scholar 

  2. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  3. Iesan, D., Pompei, A.: Equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Iesan, D., Quintanilla, R.: Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 43, 885–907 (2005)

    Article  MATH  Google Scholar 

  5. Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229–1240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1–2), 291–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarletta, M.: On the bending of microstretch elastic plates. Int. J. Eng. Sci. 37, 1309–1318 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. Trans. ASME 132(4), 044501-1–044501-6 (2010)

    Article  Google Scholar 

  9. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Continuum Mech. Thermodyn. (2017). doi:10.1007/s00161-017-0585-7

  10. Straughan, B.: Heat waves. In: Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

  11. Sharma, K., Marin, M.: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. U.P.B. Sci. Bull. Ser. A Appl. Math. Phys. 75(2), 121–132 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Mindlin, R.D.: Equation of high frequency of thermopiezoelectric crystals plate. Int. J. Solid Struct. 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  13. Nowacki, W.: Fundation of Linear Piezoelectricity. Springer, Wein (1979)

    Google Scholar 

  14. Chandrasekharaiah, D.S.: A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech. 71(1–4), 39–49 (1988)

    Article  MATH  Google Scholar 

  15. Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solids Struct. 41, 2099–2110 (2004)

    Article  MATH  Google Scholar 

  16. Iesan, D.: Thermopiezoelectricity without energy dissipation. Proc. R. Soc. A 464, 631–657 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gales, C.: Some results in micromorphic piezoelectricity. Eur. J. Mech. A Solids 31, 37–46 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Knops, R.J., Payne, L.E.: On uniqueness and continuous data dependence in dynamical problems of linear thermoelasticity. Int. J. Solids Struct. 6, 1173–1184 (1970)

    Article  MATH  Google Scholar 

  22. Levine, H.A.: On a theorem of Knops and Payne in dynamical thermoelasticity. Arch. Ration. Mech. Anal. 38, 290–307 (1970)

    Article  MATH  Google Scholar 

  23. Rionero, S., Chirita, S.: The Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25, 935–947 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wilkes, N.S.: Continuous dependence and instability in linear thermoelasticity. SIAM J. Appl. Math. 11, 292–299 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morro, A., Straughan, B.: A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci. 14, 295–299 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Iesan, D., Quintanilla, R.: Some theorems in the theory of microstretch thermopiezoelectricity. Int. J. Eng. Sci. 45, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  28. Pazy, A.: Semigroups of Operators of Linear Operators and Applications. Springer, New York (1983)

    MATH  Google Scholar 

  29. Mikhlin, S.G.: The Problem of the Minimum of a Quadratic Functional. Holden-Day, Inc., San Francisco (1965)

    MATH  Google Scholar 

  30. Craciun, E.M., Baesu, E., Soós, E.: General solution in terms of complex potentials in antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation. IMA J. Appl. Math. 70(1), 39–52 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cringanu, J.: Multiple solutions of a multivalued Neumann problem. Math. Rep. 8 (58)(2), 131–135 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. An initial boundary value problem for modeling a piezoelectric dipolar body. Continuum Mech. Thermodyn. 30, 267–278 (2018). https://doi.org/10.1007/s00161-017-0599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0599-1

Keywords

Navigation