Skip to main content
Log in

On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape-memory alloy sample—III: Magneto-mechanical behaviors

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This is the concluding part III of a series of papers. The aim of the current paper is to simulate and analyze the procedure of variant reorientation in a magnetic shape-memory alloy (MSMA) sample and to predict the response of the sample subject to various loading conditions. The sample to be considered in this paper has a 3D cuboid shape and is subject to typical magneto-mechanical loading conditions. Variant reorientation in the sample is realized through twin interface movements. To investigate the key features of twin interface movements, the properties of configurational forces on the twin interfaces are analyzed. For both the stress-assisted MFIS tests and the field-assisted quasi-elasticity tests, the magneto-mechanical behavior of the MSMA sample during the whole loading procedure is simulated by using the finite element method. The influence of the initial variant distribution in the sample on its global response is discussed. The obtained numerical results are compared with the experimental results. It can be seen that the model predictions can fit the experimental results both at a qualitative as well as at a quantitative level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J., Steinmann P.: On the modelling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. I: Theoretical formulation. Continuum Mech. Thermodyn. 26, 563–592 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Wang, J., Steinmann, P.: On the modelling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: Numerical algorithm. Continuum Mech. Thermodyn. doi:10.1007/s00161-014-0403-4

  3. Tickle R., James R.D.: Magnetic and magnetomechanical properties of Ni 2 MnGa. J. Magn. Magn. Mater. 195, 627–638 (1999)

    Article  ADS  Google Scholar 

  4. Murrey S.J., Marioni M., Allen S.M., O’Handley R.C., Lograsso T.A.: 6 magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 77, 886–888 (2000)

    Article  ADS  Google Scholar 

  5. Heczko O., Glavatska N., Gavriljuk V., Ullakko K.: Influence of magnetic field and stress on large magnetic shape memory effect in single crystalline Ni–Mn–Ga ferromagnetic alloy at room temperature. Mater. Sci. Forum 373–376, 341–344 (2001)

    Article  Google Scholar 

  6. Müllner P., Chernenko V.A., Kostorz G.: Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scr. Mater. 49, 129–133 (2003)

    Article  Google Scholar 

  7. Straka L., Heczko O.: Superelastic response of NiCMnCGa martensite in magnetic fields and a simple model. IEEE Trans. Magn. 39, 3402–3404 (2003)

    Article  ADS  Google Scholar 

  8. Chernenko V.A., L’vov V.A., Müllner P., Kostorz G., Takagi T.: Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: experiment and modeling. Phys. Rev. B 69, 134410 (2004)

    Article  ADS  Google Scholar 

  9. Karaca H.E., Karaman I., Basaran B., Chumlyakov Y.I., Maier H.J.: Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 54, 233–245 (2006)

    Article  Google Scholar 

  10. Straka, L.: Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. Doctoral dissertation, Helsinki University of Technology (2007)

  11. Straka L., Lanska N., Ullakko K., Sozinov A.: Twin microstructure dependent mechanical response in Ni–Mn–Ga single crystals. Appl. Phys. Lett. 96, 131903 (2010)

    Article  ADS  Google Scholar 

  12. Chmielus M., Glavatskyy I., Hoffmann J.-U., Chernenko V.A., Schneiderd R., Mullner P.: Influence of constraints and twinning stress on magnetic field-induced strain of magnetic shape-memory alloys. Scr. Mater. 64, 888–891 (2011)

    Article  Google Scholar 

  13. Chen X., He Y.J., Moumni Z.: Twin boundary motion in NiMnGa single crystals under biaxial compression. Mater. Lett. 90, 72–75 (2013)

    Article  Google Scholar 

  14. Chen X., Moumni Z., He Y.J., Zhang W.H.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. LaMaster D.H., Feigenbaum H.P., Nelson I.D., Ciocanel C.: A full two-dimensional thermodynamic-based model for magnetic shape memory alloys. J. Appl. Mech. 81, 061003 (2014)

    Article  Google Scholar 

  16. Chen Q., Konrad A.: A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems. IEEE Trans. Mag. 33, 663–676 (1997)

    Article  ADS  Google Scholar 

  17. Eshelby J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Suorsa, I.: Performance and modeling of magnetic shape memory actuators and sensors. Doctoral dissertation, Helsinki University of Technology (2005)

  19. Straka L., Hänninen H., Soroka A., Sozinov A.: Ni–Mn–Ga single crystals with very low twinning stress. J. Phys. Conf. Ser. 303, 012079 (2011)

    Article  ADS  Google Scholar 

  20. Abeyaratne R.: An admissibility condition for equilibrium shocks in finite elasticity. J. Elast. 13, 175–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Landis C.M.: A continuum thermodynamics formulation for micro-magneto-mechanics with applications to ferromagnetic shape memory alloys. J. Mech. Phys. Solids 56, 3059–3076 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wu P.P., Ma X.Q., Zhang J.X., Chen L.Q.: Phase-field simulations of stress–strain behaviour in ferromagnetic shape memory alloy NiMnGa. J. Appl. Phys. 104, 073906 (2008)

    Article  ADS  Google Scholar 

  23. Jin Y.M.: Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: phase field simulation. Appl. Phys. Lett. 94, 062508 (2009)

    Article  ADS  Google Scholar 

  24. Li L.J., Lei C.H., Shu Y.C., Li J.Y.: Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta. Mater. 59, 2648–2655 (2011)

    Article  ADS  Google Scholar 

  25. Mennerich C., Wendler F., Jainta M., Nestler B.: A phase-field model for the magnetic shape memory effect. Arch. Mech. 63, 549–571 (2011)

    MathSciNet  Google Scholar 

  26. Peng Q., He Y.J., Moumni Z.: A phase-field model on the hysteretic magneto-mechanical behaviors of ferromagnetic shape memory alloy. Acta. Mater. 88, 13–24 (2015)

    Article  Google Scholar 

  27. Lai, Y.W.: Magnetic microstructure and actuation dynamics of NiMnGa magnetic shape memory materials. Ph.D. thesis, Technical University of Dresden (2009)

  28. Straka L., Hänninen H., Lanska N., Sozinov A.: Twin interaction and large magnetoelasticity in Ni–Mn–Ga single crystals. J. Appl. Phys. 109, 063504 (2011)

    Article  ADS  Google Scholar 

  29. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Steinmann, P. On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape-memory alloy sample—III: Magneto-mechanical behaviors. Continuum Mech. Thermodyn. 28, 885–913 (2016). https://doi.org/10.1007/s00161-015-0452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0452-3

Keywords

Navigation