Skip to main content
Log in

Adaptive kriging model-based structural reliability analysis under interval uncertainty with incomplete data

  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Uncertainty of quantitative models of input variables and computational model could certainly cause the uncertainties of structural response and structural reliability. Hence, structural reliability analysis requires precise input uncertainty model and highly accurate solving model. However, not all uncertain input variable can be described by an explicit quantitative model in practical engineering. Generally, only incomplete samples of some variables are available in practice. Though Monte Carlo Simulation (MCS) has been used to solve above problem, we are confronted with another trouble due to the expensive two-layer MCSs. Furthermore, approximate methods for reliability assessment would cause confidence problem of reliability. To handle with the challenges, an adaptive kriging (AK) model-based approach is proposed by dividing the two-layer MCSs into two AK models. Simultaneously, a new quantitative model for interval variables is developed to deal with input uncertainty. And a novel learning function improved by H learning function (IH function) is developed with a weight function to enhance the efficiency of constructing kriging models. The IH function not only considers design sites with large uncertainty, but also actively searches for that around the LSF by assigning different weight value for design points. In the proposed approach, the first AK model is constructed for reliability prediction. And the relationship between parameters of input models and reliability is built by the other kriging model using the first one. Credibility assessment will be implemented according to the second model. Since, only the first AK model needs the time-consuming finite element (FE) calculations, the proposed approach could significantly improve the efficiency of confidential reliability analysis without losing accuracy. Several numerical examples are implemented to demonstrate the feasibility and effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Apostolakis G (1990) The concept of probability in safety assessments of technological systems. Science 250(4986):1359–1364

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008) Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10):2459–2468

    Article  Google Scholar 

  • Campi MC, Calafiore G, Garatti S (2009) Interval predictor models: identification and reliability. Automatica 45(2):382–392

    Article  MATH  Google Scholar 

  • Chen Z, Li G, He J, Yang Z, Wang J (2022) A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering. Reliab Eng Syst Saf 218:108124

    Article  Google Scholar 

  • Cho H, Choi KK, Gaul NJ, Lee I, Lamb D, Gorsich D (2016) Conservative reliability-based design optimization method with insufficient input data. Struct Multidisc Optim 54(6):1609–1630

    Article  Google Scholar 

  • Cox DD, John S (1992) A statistical method for global optimization. In: Proceedings of 1992 IEEE international conference on systems, man, and cybernetics, 1992. IEEE, pp 1241–1246

  • Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33(2):145–154

    Article  Google Scholar 

  • Elishakoff I, Elisseeff P, Glegg SA (1994) Nonprobabilistic, convex-theoretic modeling of scatter in material properties. AIAA J 32(4):843–849

    Article  MATH  Google Scholar 

  • Gayton N, Bourinet JM, Lemaire M (2003) CQ2RS: a new statistical approach to the response surface method for reliability analysis. Struct Saf 25(1):99–121

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Gunawan S, Papalambros PY (2006) A Bayesian approach to reliability-based optimization with incomplete information. J Mech Des (ASME) 128(4):909–918

    Article  Google Scholar 

  • Harney HL (2016) Bayesian inference: data evaluation and decisions. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MATH  Google Scholar 

  • Jung Y, Lee I, Cho H (2019) Reliability measure approach for confidence-based design optimization under insufficient input data. Struct Multidisc Optim 60(5):1967–1982

    Article  Google Scholar 

  • Jung Y, Kang K, Cho H, Lee I (2021) Confidence-based design optimization (CBDO) for a more conservative optimum under surrogate model uncertainty caused by Gaussian Process. J Mech Des (ASME) 143(9):1–35

    Google Scholar 

  • Kawaguchi K, Kaelbling LP, Lozano-Pérez T (2015) Bayesian optimization with exponential convergence. In: Advances in neural information processing systems, 2015, vol 28

  • Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc B 63(3):425–464

    Article  MATH  Google Scholar 

  • Li M, Wang Z (2019) Surrogate model uncertainty quantification for reliability-based design optimization. Reliab Eng Syst Saf 192:106432

    Article  Google Scholar 

  • Li X, Gong C, Gu L, Gao W, Jing Z, Su H (2018) A sequential surrogate method for reliability analysis based on radial basis function. Struct Saf 73:42–53

    Article  Google Scholar 

  • Long T, Wei Z, Shi R, Wu YF (2021) Parallel adaptive kriging method with constraint aggregation for expensive black-box optimization problems. AIAA J 59(9):3465–3479

    Article  Google Scholar 

  • Lv Z, Lu Z, Wang P (2015) A new learning function for Kriging and its applications to solve reliability problems in engineering. Comput Math Appl 70(5):1182–1197

    Article  MATH  Google Scholar 

  • Martz HF, Waller R (1982) Bayesian reliability analysis. Wiley, New York

    MATH  Google Scholar 

  • Meng Z, Zhang Z, Li G, Zhang D (2020) An active weight learning method for efficient reliability assessment with small failure probability. Struct Multidisc Optim 61(3):1157–1170

    Article  Google Scholar 

  • Moon MY, Choi KK, Cho H, Gaul N, Lamb D, Gorsich D (2017) Reliability-based design optimization using confidence-based model validation for insufficient experimental data. J Mech Des (ASME) 139(3):031404

    Article  Google Scholar 

  • Moon MY, Choi KK, Cho H, Gaul N, Lamb D, Gorsich D (2018) Confidence-based reliability assessment considering limited numbers of both input and output test data. Struct Multidisc Optim 57(5):2027–2043

    Article  Google Scholar 

  • Moon MY, Choi KK, Gaul N, Lamb D (2019) Treating epistemic uncertainty using bootstrapping selection of input distribution model for confidence-based reliability assessment. J Mech Des (ASME) 141(3):031402

    Article  Google Scholar 

  • Morgan MG, Henrion M, Small M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Noh Y, Choi KK, Lee I (2010) Identification of marginal and joint CDFs using Bayesian method for RBDO. Struct Multidisc Optim 40(1):35–51

    Article  MATH  Google Scholar 

  • Noh Y, Choi KK, Lee I (2011) Reliability-based design optimization with confidence level under input model uncertainty due to limited test data. Struct Multidisc Optim 43(4):443–458

    Article  MATH  Google Scholar 

  • Parry GW (1996) The characterization of uncertainty in probabilistic risk assessments of complex systems. Reliab Eng Syst Saf 54(2–3):119–126

    Article  Google Scholar 

  • Qiu Z, Wang X (2003) Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int J Solids Struct 40(20):5423–5439

    Article  MATH  Google Scholar 

  • Wang C, Matthies HG (2019) Novel model calibration method via non-probabilistic interval characterization and Bayesian theory. Reliab Eng Syst Saf 183:84–92

    Article  Google Scholar 

  • Wang X, Qiu Z, Elishakoff I (2008) Non-probabilistic set-theoretic model for structural safety measure. Acta Mech 198(1):51–64

    Article  MATH  Google Scholar 

  • Wang C, Matthies HG, Xu M, Li Y (2018) Epistemic uncertainty-based model validation via interval propagation and parameter calibration. Comput Methods Appl Mech Eng 342:161–176

    Article  MATH  Google Scholar 

  • Wang Y, Hao P, Yang H, Wang B, Gao Q (2020) A confidence-based reliability optimization with single loop strategy and second-order reliability method. Comput Methods Appl Mech Eng 372:113436

    Article  MATH  Google Scholar 

  • Wu J, Jiang Z, Song H, Wan L, Huang F (2021) Parallel efficient global optimization method: a novel approach for time-dependent reliability analysis and applications. Expert Syst Appl 184:115494

    Article  Google Scholar 

  • Xue G, Dai H, Zhang H, Wang W (2017) A new unbiased metamodel method for efficient reliability analysis. Struct Saf 67:1–10

    Article  Google Scholar 

  • Yang X, Liu Y, Gao Y, Zhang Y, Gao Z (2015) An active learning kriging model for hybrid reliability analysis with both random and interval variables. Struct Multidisc Optim 51(5):1003–1016

    Article  Google Scholar 

  • Youn BD, Wang P (2008) Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method. Struct Multidisc Optim 36(2):107–123

    Article  Google Scholar 

  • Zhang R, Mahadevan S (2000) Model uncertainty and Bayesian updating in reliability-based inspection. Struct Saf 22(2):145–160

    Article  Google Scholar 

  • Zhang X, Wang L, Sørensen JD (2019) REIF: a novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis. Reliab Eng Syst Saf 185:440–454

    Article  Google Scholar 

Download references

Funding

This study was supported by National Nature Science Foundation of the P. R. China (No. 12002014), the Fundamental Research Funds for the Central Universities,  National Nature Science Foundation of the P. R. China (Nos. 52192632 and 12132001), Beijing Advanced Discipline Center for Unmanned Aircraft System, Beijing Municipal Science and Technology Commission (No. Z191100004619006), Defense Industrial Technology Development Program (Nos. JCKY2018601B001 and JCKY2019203A003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Replication of results

The MATLAB codes of the examples are available in the Supplementary Materials. And the DACE package can be found in http://www2.imm.dtu.dk/pubdb/pubs/1460-full.html.

Additional information

Responsible Editor: Christian Gogu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

According to Eqs. (4) and (5), the posterior joint PDF of the two parameters can be solved as

$$\begin{aligned} p({\varvec{\mu}},\;\left. {\varvec{r}} \right|x^{*} ) & = \frac{{\left( {2{\varvec{r}}} \right)^{{ - n_{{{\text{initial}}}} }} \times c}}{{\int_{\Sigma } {\left( {2{\varvec{r}}} \right)^{{ - n_{{{\text{initial}}}} }} \times c{\text{d}}{\varvec{\mu}}{\text{d}}{\varvec{r}}} }} \\ & = \frac{{{\varvec{r}}^{{ - n_{{{\text{initial}}}} }} }}{{\int_{\Sigma } {{\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{\mu}}{\text{d}}{\varvec{r}}} }} \\ & = \lambda {\varvec{r}}^{{ - n_{{{\text{initial}}}} }} , \\ \end{aligned}$$
(31)

where constant \(\lambda\) is

$$\begin{aligned} \lambda & = \left[ {\int_{\Sigma } {{\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{\mu}}{\text{d}}{\varvec{r}}} } \right]^{ - 1} \\ & = \left[ {\int_{{\left( {x_{\max }^{*} - x_{\min }^{*} } \right)/2}}^{ + \infty } {{\text{d}}{\varvec{r}}\int_{{x_{\max }^{*} - r}}^{{x_{\min }^{*} + r}} {{\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{\mu}}} } } \right]^{ - 1} \\ & = \left[ {\int_{{\left( {x_{\max }^{*} - x_{\min }^{*} } \right)/2}}^{ + \infty } {{\varvec{r}}^{{ - n_{{{\text{initial}}}} }} \left( {x_{\min }^{*} - x_{\max }^{*} + 2{\varvec{r}}} \right){\text{d}}{\varvec{r}}} } \right]^{ - 1} \\ & = \left[ {\frac{1}{{\left( {n_{{{\text{initial}}}} - 1} \right)\left( {n_{{{\text{initial}}}} - 2} \right)}}\frac{{2^{{n_{{{\text{initial}}}} - 1}} }}{{\left( {x_{\max }^{*} - x_{\min }^{*} } \right)^{{n_{{{\text{initial}}}} - 2}} }}} \right]^{ - 1} . \\ \end{aligned}$$
(32)

Thus, the marginal PDFs is shown as

$$\begin{aligned} p(\left. {\varvec{r}} \right|x^{*} ) & = \int {p({\varvec{\mu}},\;\left. {\varvec{r}} \right|x^{*} ){\text{d}}{\varvec{\mu}}} \\ & = \int_{{x_{\max }^{*} - r}}^{{x_{\min }^{*} + r}} {\lambda {\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{\mu}}} \\ & = \frac{{\lambda \left( {2\varvec{r + }x_{\min }^{*} - x_{\max }^{*} } \right)}}{{{\varvec{r}}^{{n_{{{\text{initial}}}} }} }},\quad {\varvec{r}} \ge \left( {x_{\max }^{*} - x_{\min }^{*} } \right)/2, \\ \end{aligned}$$
(33)
$$\begin{aligned} p(\left. {\varvec{\mu}} \right|x^{*} ) & = \int {p({\varvec{\mu}},\;\left. {\varvec{r}} \right|x^{*} ){\text{d}}{\varvec{r}}} \\ & = \left\{ \begin{gathered} \int_{{\varvec{\mu - }x_{\min }^{*} }}^{ + \infty } {\lambda {\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{r}}} \hfill \\ \int_{{\varvec{ - \mu } + x_{\max }^{*} }}^{ + \infty } {\lambda {\varvec{r}}^{{ - n_{{{\text{initial}}}} }} {\text{d}}{\varvec{r}}} \hfill \\ \end{gathered} \right. \\ & = \left\{ {\begin{array}{*{20}c} {\frac{\lambda }{{\left( {n_{{{\text{initial}}}} - 1} \right)\left( {x_{\max }^{*} - {\varvec{\mu}}} \right)^{{n_{{{\text{initial}}}} - 1}} }},} & {{\varvec{\mu}} \le \left( {x_{\min }^{*} + x_{\max }^{*} } \right)/2} \\ {\frac{\lambda }{{\left( {n_{{{\text{initial}}}} - 1} \right)\left( {{\varvec{\mu}} - x_{\min }^{*} } \right)^{{n_{{{\text{initial}}}} - 1}} }},} & {{\varvec{\mu}} > \left( {x_{\min }^{*} + x_{\max }^{*} } \right)/2.} \\ \end{array} } \right. \\ \end{aligned}$$
(34)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Li, Y. Adaptive kriging model-based structural reliability analysis under interval uncertainty with incomplete data. Struct Multidisc Optim 66, 22 (2023). https://doi.org/10.1007/s00158-022-03474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03474-9

Keywords

Navigation