Skip to main content
Log in

An improved high-moment method for reliability analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

For reliability analysis, there may be several potential distributions for a random variable due to limited samples available. For the same reason, a distribution may not be available. Simply assuming a normal distribution may result in a large error for the reliability prediction. Moment-based methods use only moments of random variables for reliability analysis and can effectively address the problem of multiple distributions or lack of distributions. The existing moment-based methods, however, may produce large errors or may result in instability in the analysis process. This study extends the high-moment method for higher accuracy of the reliability prediction by including the parameters ignored by the existing high-moment method. The proposed method derives the reliability index from the first four moments of random input variables based on the statistical properties of the standard normal random variable. Compared with the existing method, the proposed method is more accurate and stable for problems for which the distributions of input random variables are unknown. Numerical examples show the improved accuracy from the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benaroya H, Rehak M (1988) Finite element methods in probabilistic structural analysis: a selective review. Appl Mech Rev 41(5):201–213

    Article  MATH  Google Scholar 

  • Birnbaum ZW (1956) On a use of the Mann-Whitney statistic. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol 1. University of Califomia Pres, Berkeley, pp 13–17

  • Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66

    Article  Google Scholar 

  • Das PK, Zheng Y (2000) Cumulative formation of response surface and its use in reliability analysis. Probab Eng Mech 15(4):309–315

    Article  Google Scholar 

  • Der Kiureghian A, De Stefano M (1991) Efficient algorithm for second-order reliability analysis. ASCE J Eng Mech 117(1):2904–2923

    Article  Google Scholar 

  • Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability. Prob Eng Mech 3(2):83–91

    Article  Google Scholar 

  • Der Kiureghian A, Liu PL (1986) Structural reliability under incomplete probability information. ASCE J Eng Mech 112(1):85–104

    Article  Google Scholar 

  • Du X (2010) System reliability analysis with saddlepoint approximation. Struct Multidiscip Optim 42(2):193–208

    Article  MATH  MathSciNet  Google Scholar 

  • Du X, Hu Z (2012) First order reliability method with truncated random variables. J Mech Des 134(9):091005-091005-9

    Article  Google Scholar 

  • Faravelli L (1989) Response surface approach for reliability analysis. ASCE J Eng Mech 115(12):2763–2781

    Article  Google Scholar 

  • Freudenthal AM (1947) The safety of structures. ASCE Transactions 112(1):125–129

    Google Scholar 

  • Ghanem RG, Spanos PD (1991) Spectral stochastic finite-element equationtion for reliability analysis. J Eng Mech ASCE 117(10):2351–2372

    Article  Google Scholar 

  • Ghanem R, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover Publications, New York

    MATH  Google Scholar 

  • Gong JX, Yi P (2011) A robust iterative algorithm for structural reliability analysis. Struct Multidiscip Optim 43(4):519

    Article  MATH  Google Scholar 

  • Gorman MR (1980) Reliability of structural system. Case Western Reserve University, Cleveland, pp 320–332

    Google Scholar 

  • Guan XL, Melchers RE (2001) Effect of response surface parameter variation on structural reliability estimates. Struct Saf 23(4):429–444

    Article  Google Scholar 

  • Guo SX, Lu ZZ (2015) A non-probabilistic robust reliability method for analysis and design optimization of structures with uncertain-but-bounded parameters. Appl Math Model 39(7):1985–2002

    Article  MathSciNet  Google Scholar 

  • Haldar A, Mahadevan S (2000) Reliability assessment using stochastic finite element analysis. Wiley, New York

    Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. ASCE J Eng Mech Div 100(EM1):111–121

    Google Scholar 

  • Hohenbichler M, Rackwitz R (1981) Non-normal dependent vectors in structural safety. ASCE J Eng Mech Div 107(6):1227–1249

    Google Scholar 

  • Hohenbichler M, Rackwitz R (1983) First-order concepts in system reliability. Struct Saf 1(3):177–188

    Article  Google Scholar 

  • Hong HP (1998) Point-estimate moment-based reliability analysis. Civ Eng Syst 13(4):281–294

    Article  MathSciNet  Google Scholar 

  • Huang X, Liu Y, Zhang Y et al (2016) Reliability analysis of structures using stochastic response surface method and saddlepoint approximation. Struct Multidiscip Optim. doi:10.1007/s00158-016-1617-9

  • Hurtado JE (2004) Structural reliability: statistical learning perspectives. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hurtado JE, Alvarez DA (2003) Classification approach for reliability analysis with stochastic finite-element modeling. J Struct Eng ASCE 129(8):1141–1149

    Article  Google Scholar 

  • Ibrahim RA (1987) Structural dynamics with parameter uncertainties. Appl Mech Rev 40(3):309–328

    Article  Google Scholar 

  • Kang W, Lee YJ, Song J, Gencturk B (2012) Further development of matrix-based system reliability method and applications to structural systems. Struct Infrastruct Eng 8(5):441–457

    Article  Google Scholar 

  • Kim SH, Na SW (1997) Response surface method using vector projected sampling points. Struct Saf 19(1):3–19

    Article  Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  • Montgomery DC (2005) Design and analysis of experimens, 6th edn. Wiley, New York

    Google Scholar 

  • Parkinson DB (1978) First-order reliability analysis employing translation systems. Eng Struct 1(1):31–40

    Article  Google Scholar 

  • Rajashekhar MR, Ellingwood BR (1993) A new look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220

    Article  Google Scholar 

  • Rosenblueth E (1981) Two-point estimates in probability. Appl Math Model 5(5):329–335

    Article  MATH  MathSciNet  Google Scholar 

  • Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using three-point informatio. Int J Prod Res 40(4):931–944

    Article  MATH  Google Scholar 

  • Stuart A, Ord JK (1987) Kendall’s advanced theory of statistics, vol 1. Charles Griffin & Company Ltd, London, pp 210–275

    MATH  Google Scholar 

  • Umberto A, Koh CG (2015) First-order reliability method for structural reliability analysis in the presence of random and interval variables. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 1(4):041006-041006-10

    Google Scholar 

  • Vanmarcke EH (1983) Random field: analysis and synthesis. MIT Press, Cambridge

    MATH  Google Scholar 

  • Vanmarcke E, Shinozuka M, Nakagiri S et al (1986) Random fields and stochastic finite elements. Struct Saf 3(3–4):143–166

    Article  Google Scholar 

  • Xiao NC, Huang HZ, Wang Z et al (2011) Reliability sensitivity analysis for structural systems in interval probability form. Struct Multidiscip Optim 44(5):691

    Article  MATH  MathSciNet  Google Scholar 

  • Yao W, Chen X, Huang Y, van Tooren M (2013) An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization. Reliab Eng Syst Saf 116:28–37

    Article  Google Scholar 

  • Zhang T (2017) Matrix description of differential relations of moment functions in structural reliability sensitivity analysis. Appl Math Mech (English Edition) 38(1):57–72

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao YG, Ono T (2000) New point estimates for probability moments. J Eng Mech ASCE 126(4):433–436

    Article  Google Scholar 

  • Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Saf 23(1):47–75

    Article  Google Scholar 

  • Zheng Y, Das PK (2000) Improved response surface method and its application to stiffened plate reliability analysis. Eng Struct 22(5):544–551

    Article  Google Scholar 

  • Zhou JH, Nowak AS (1988) Integration equations to evaluate functions of random variables. Struct Saf 5(4):267–284

    Article  Google Scholar 

  • Zio E (2013) The Monte Carlo simulation method for system reliability and risk analysis. Springer, London

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation Project (Grant no. 51135003) and the National Key Development Program for Fundamental Research (973 Program, Grant no. 2014CB046303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T. An improved high-moment method for reliability analysis. Struct Multidisc Optim 56, 1225–1232 (2017). https://doi.org/10.1007/s00158-017-1715-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1715-3

Keywords

Navigation