Skip to main content

Advertisement

Log in

Level set-based topology optimization for the design of a peltier effect thermoelectric actuator

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Thermoelectric actuators are a type of thermal actuator that generates motion through the input of thermal energy by thermoelectric devices. Thermoelectric actuators utilize thermal expansion and contraction effects, achieved by heating and cooling appropriate parts of the mechanism, which enables specified motions to be carried out and can provide quicker response times than those of typical thermal compliant mechanisms that rely on thermal expansion effects alone. However, the need to consider both thermal expansion and contraction effects makes the design process more complex. This paper proposes a topology optimization method, especially appropriate for the conceptual design of thermoelectric actuators, that uses a level set function to represent structural shape profiles so that optimized configurations have clear structural boundaries. Several numerical examples of thermoelectric actuator design problems are presented to confirm the effectiveness and utility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459

    Article  MATH  Google Scholar 

  • Chu J, Zhang R, Chen Z (2011) A novel su-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method. J Micromech Microeng 21(5):054–030

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • AR Díaz, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Meth Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Errico RM (1997) What is an adjoint model?. Bull Am Meteorogical Soc 78(11):2577–2591

    Article  Google Scholar 

  • Gao T, Zhang W, Zhu J, Xu Y, Bassir D (2008) Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem Anal Des 44(14):805–813

    Article  Google Scholar 

  • Isakari H, Kuriyama K, Harada S, Yamada T, Takahashi T, Matsumoto T (2014) A topology optimisation for three-dimensional acoustics with the level set method and the fast multipole boundary element method. J Mech Eng 1(4):CM0039–CM0039

    Article  Google Scholar 

  • Jeang A (2008) Combined parameter and tolerance design for quality via computer experiment: a design for thermoelectric microactuator. Electron Packag Manuf 31(3):192–201

    Article  MathSciNet  Google Scholar 

  • Kobayashi M, Nishiwaki S, Izui K, Yoshimura M (2009) An innovative design method for compliant mechanisms combining structural optimisations and designer creativity. J Eng Design 20(2):125–154

    Article  Google Scholar 

  • Li J, Ananthasuresh G (2001) A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices. J Micromech Microeng 11(1):38

    Article  Google Scholar 

  • Li Q, Steven GP, Querin OM, Xie Y (1999) Shape and topology design for heat conduction by evolutionary structural optimization. Int J Heat Mass Trans 42(17):3361–3371

    Article  MATH  Google Scholar 

  • Noguchi Y, Yamada T, Otomori M, Izui K, Nishiwaki S (2015) An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization. Appl Phys Lett 107 (22):221,909

    Article  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidisc Optim 51(5):1159–1172

    Article  MathSciNet  Google Scholar 

  • Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Meth Eng 50(12):2683–2705

    Article  MATH  Google Scholar 

  • Pérez-Aparicio JL, Taylor R, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mechs 40(1):35–45

    Article  MATH  Google Scholar 

  • Prasanna S, Spearing SM (2007) Materials selection and design of microelectrothermal bimaterial actuators. J Microelectromech Syst 16(2):248–259

    Article  Google Scholar 

  • Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935

    Article  Google Scholar 

  • Rubio WM, Silva ECN, Nishiwaki S (2007) Piezoresistive sensor design using topology optimization. Struct Multidisc Optim 36(6):571–583

    Article  Google Scholar 

  • Seelecke S, Muller I (2004) Shape memory alloy actuators in smart structures: Modeling and simulation. Appl Mech Rev 57(1):23–46

    Article  Google Scholar 

  • Shakoor RI, Bazaz SA, Kraft M, Lai Y, Ul Hassan MM (2009) Thermal actuation based 3-dof non-resonant microgyroscope using metalmumps. Sens 9(4):2389–2414

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization*. J Struct Mech 25 (4):493–524

    Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization–part i: One-material structures. Comput Methods Appl Mech Eng 190(49):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2014) Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J Comput Phys 274:158–181

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methos Appl Mech Eng 199(45-48):2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S (2011a) A level set-based topology optimization method for maximizing thermal diffusivity in problems including design-dependent effects. J Mech Eng 133(3):031,011

    Google Scholar 

  • Yamada T, Yamasaki S, Nishiwaki S, Izui K, Yoshimura M (2011b) Design of compliant thermal actuators using structural optimization based on the level set method. J Comput Inf Sci Eng 11(1):011,005

    Article  Google Scholar 

  • Yin L, Ananthasuresh G (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sens Actuators A 97:599–609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Furuta.

Appendix: Sensitivity analysis

Appendix: Sensitivity analysis

In this Appendix, we provide the details of the sensitivity analysis. First, we note that the design sensitivity, \(\bar {F}^{\prime }\), is obtained as

$$ \langle \bar{F}^{\prime},\delta \tilde{\chi}_{\phi} \rangle= \frac{\text{d}}{\text{d} \eta} \bar{F}(\tilde{\chi}_{\phi} + \eta \delta \tilde{\chi}_{\phi}) \mid_{\eta=0}. $$
(44)

We expand above equation as follows:

$$\begin{array}{@{}rcl@{}} \langle \bar{F}^{\prime},\delta \tilde{\chi}_{\phi} \rangle &=& {\int}_{D} (\epsilon (\delta {u}) : \mathbf{E} : \epsilon (\tilde{{u}}) \delta \tilde{\chi}_{\phi} - \alpha_{T} T \textbf{I} :\mathbf{E} : \epsilon(\tilde{{u}}) \delta \tilde{\chi}_{\phi} \\ &+& \kappa \nabla T \cdot \nabla \tilde{T} \delta \tilde{\chi}_{\phi} + \lambda \delta\tilde{\chi}_{\phi} )\text{d}{\Omega} \! +\! {\int}_{{\Gamma}_{t}} (k \delta {u} \cdot \tilde{{u}}- {t} \cdot \delta {u})\text{d} {\Omega}\\ & +& {\int}_{D} \epsilon (\delta {u}) : \mathbf{E} : \epsilon (\tilde{{u}})\tilde{\chi}_{\phi} \text{d} {\Omega} + {\int}_{D} (-\alpha_{T} \delta T \textbf{I} : \mathbf{E} : \epsilon (\tilde{{u}})\chi \\ &+& \kappa \nabla \delta T \cdot \nabla \tilde{T} \tilde{\chi}_{\phi} ) \text{d} {\Omega} + {\int}_{{\Omega}_{p}} \epsilon (\delta {u}) : \mathbf{E} : \epsilon (\tilde{{u}}) \text{d} {\Omega} \\ &+& {\int}_{{\Omega}_{p}} (-\alpha_{T} \delta T \textbf{I} : \mathbf{E} : \epsilon (\tilde{{u}}) + \kappa (T) \delta T \nabla T \cdot \nabla \tilde{T} \\ &-& \frac{\text{d} }{\text{d} T}(\alpha(T) \gamma(T) T) \nabla \tilde{T} \cdot \nabla V\\ &-& \frac{\text{d} }{\text{d} T}(\kappa(T) +\alpha(T)^{2}\gamma(T) T) \nabla \tilde{T} \cdot \nabla T \\ &-& (\kappa(T)+ \alpha(T)^{2}\gamma(T) T) \nabla \tilde{T} \cdot \nabla \delta T\\ &+& \frac{\text{d} \gamma (T)}{\text{d} T} \tilde{T} \nabla V \cdot \nabla V + \frac{\text{d}}{\text{d} T} (\alpha(T) \gamma(T) )\tilde{T} \nabla T \cdot \nabla V \\ &+& \alpha(T) \gamma(T) \tilde{T} \nabla \delta T \cdot \nabla V +\frac{\text{d} \gamma (T)}{\text{d} T} \nabla \tilde{V} \cdot \nabla V\\ &-&\frac{\text{d}}{\text{d} T}(\alpha(T) \gamma(T) )\nabla \tilde{V} \cdot \nabla T \! -\! \alpha(T) \gamma(T) \nabla \tilde{V} \cdot \nabla \delta T) \text{d} {\Omega}\\ & +& {\int}_{{\Omega}_{p}} (-\alpha(T)\gamma(T)T \nabla \tilde{T} \cdot \nabla \delta V + 2 \gamma (T) \tilde{T} \nabla \delta V \cdot \nabla V \\ &+&\alpha(T) \gamma(T) \tilde{T} \nabla T \cdot \nabla \delta V - \gamma(T) \nabla \tilde{V} \cdot \nabla \delta V) \text{d}{\Omega}. \end{array} $$
(45)

Based on the adjoint variable method (Errico 1997), the adjoint equations are now defined as follows:

$$\begin{array}{@{}rcl@{}} {\int}_{D} \epsilon (\delta {u}) : \mathbf{E} : \epsilon (\tilde{{u}}) \tilde{\chi}_{\phi} \text{d}{\Omega} &+& {\int}_{{\Omega}_{p}} \epsilon (\delta {u}) : \mathbf{E} : \epsilon (\tilde{{u}}) \text{d}{\Omega} \\ & +& {\int}_{{\Gamma}_{t}} (k \delta {u} \cdot \tilde{{u}} - {t} \cdot \delta {u})\text{d}{\Gamma} = 0,\\ \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} {\int}_{D} (&-& \alpha_{T} \delta T \textbf{I} : \mathbf{E} : \epsilon({u}) \tilde{\chi}_{\phi} + \kappa \nabla \delta T \cdot \nabla \tilde{T} \tilde{\chi}_{\phi}\text{d}{\Omega}) \text{d} {\Omega}\\ & +& {\int}_{{\Omega}_{p}} (-\alpha_{T} \delta T \textbf{I} : \mathbf{E} : \epsilon({u}) +\frac{\text{d} \kappa (T)}{\text{d} T} \nabla T \cdot \nabla \tilde{T} \\ &+&\kappa(T) \nabla \delta T \cdot \nabla \tilde{T} - \frac{\text{d} }{\text{d} T}(\alpha(T)\gamma(T)T ) \nabla\tilde{T} \cdot \nabla V \\ & -&\frac{\text{d} }{\text{d} T}(\kappa(T) + \alpha(T)^{2}\gamma(T)T ) \nabla \tilde{T} \cdot \nabla T\\ & -&(\kappa(T) + \alpha(T)^{2}\gamma(T)T ) \nabla \tilde{T} \cdot \nabla \delta T \\ & +& \frac{\text{d} \gamma (T)}{\text{d} T} \tilde{T} \nabla V \cdot \nabla V +\frac{\text{d}}{\text{d} T} (\alpha(T)\gamma(T) ) \tilde{T} \nabla T \cdot \nabla V \\ & +& \alpha(T)\gamma(T) \tilde{T} \nabla \delta T \cdot \nabla V - \frac{\text{d} \gamma (T)}{\text{d} T} \nabla \tilde{V} \cdot \nabla V \\ & -&\frac{\text{d} }{\text{d} T}(\alpha(T)\gamma(T) ) \nabla \tilde{V} \cdot \nabla T\\ & -& \alpha(T)\gamma(T) \nabla \tilde{V} \cdot \nabla \delta T ) \text{d} {\Omega}= 0, \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} {\int}_{{\Omega}_{p}} (&-& \alpha(T)\gamma(T)T \nabla \tilde{T} \cdot \nabla \delta V + 2\gamma (T) \tilde{T} \nabla \delta V \cdot \nabla V \\ & +& \gamma (T) \tilde{T} \nabla V \cdot \nabla \delta V+ \alpha(T)\gamma(T)\tilde{T} \nabla T \cdot \nabla \delta V\\ & -&\gamma(T) \nabla \tilde{V} \cdot \nabla \delta V ) \text{d} {\Omega} = 0, \end{array} $$
(48)

where \(\tilde { {u}}\), \(\tilde {T}\), and \(\tilde {V}\) are the adjoint variables that respectively satisfy the above three equations. Consequently, the design sensitivity, \(\bar {F}^{\prime }\), is obtained as

$$\begin{array}{@{}rcl@{}} \langle \bar{F}^{\prime}, \delta \tilde{\chi}_{\phi}\rangle &=& {\int}_{D} (\epsilon({u}):\mathbf{E} : \epsilon (\tilde{{u}}) - \alpha_{T} T \textbf{I} : \mathbf{E} : \epsilon(\tilde{{u}})\\ &&+ \kappa \nabla T \cdot \nabla \tilde{T}+ \lambda )\delta \tilde{\chi}_{\phi} \text{d} {\Omega} , \end{array} $$
(49)

where

$$\begin{array}{@{}rcl@{}} \bar{F}^{\prime}& = &\epsilon({u}):\mathbf{E} : \epsilon (\tilde{{u}}) - \alpha_{T} T \textbf{I} : \mathbf{E} : \epsilon(\tilde{{u}})\\ &&+ \kappa \nabla T \cdot \nabla \tilde{T}+ \lambda. \end{array} $$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuta, K., Izui, K., Yaji, K. et al. Level set-based topology optimization for the design of a peltier effect thermoelectric actuator. Struct Multidisc Optim 55, 1671–1683 (2017). https://doi.org/10.1007/s00158-016-1609-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1609-9

Keywords

Navigation