Skip to main content
Log in

Edge–texture feature-based image forgery detection with cross-dataset evaluation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

A digital image is a rich medium of information. The development of user-friendly image editing tools has given rise to the need for image forensics. The existing methods for the investigation of the authenticity of an image perform well on a limited set of images or certain datasets but do not generalize well across different datasets. The challenge of image forensics is to detect the traces of tampering which distorts the texture patterns. A method for image forensics is proposed, which employs discriminative robust local binary patterns for encoding tampering traces and a support vector machine for decision making. In addition, to validate the generalization of the proposed method, a new dataset is developed that consists of historic images, which have been tampered with by professionals. Extensive experiments were conducted using the developed dataset as well as the public domain benchmark datasets; the results demonstrate the robustness and effectiveness of the proposed method for tamper detection and validate its cross-dataset generalization. Based on the experimental results, directions are suggested that can improve dataset collection as well as algorithm evaluation protocols. More broadly, discussion in the community is stimulated regarding the very important, but largely neglected, issue of the capability of image forgery detection algorithms to generalize to new test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The FRITH dataset can be downloaded from http://users.cs.cf.ac.uk/Paul.Rosin/#data

References

  1. El-Alfy, E.-S.M., Qureshi, M.A.: Robust content authentication of gray and color images using lbp-dct markov-based features. Multimed. Tools Appl. 76(12), 1–22 (2016)

    Google Scholar 

  2. Khurshid, A., Zulfiqar, H., Muhammad, H.: Copy–move and splicing image forgery detection and localization techniques: a review. Aust. J. Forensic Sci. 49(3), 281–307 (2017)

    Article  Google Scholar 

  3. Soni, B., Das, P.K., Thounaojam, D.M.: CMFD: a detailed review of block based and key feature based techniques in image copy-move forgery detection. IET Image Process. 12(2), 262–282 (2017)

    Google Scholar 

  4. Gryka, M., Terry, M., Brostow, G.J.: Learning to remove soft shadows. ACM Trans. Gr. (TOG) 34(5), 153–167 (2015)

    Google Scholar 

  5. Karsch, K., Sunkavalli, K., Hadap, S., Carr, N., Jin, H., Fonte, R., Sittig, M., Forsyth, D.: Automatic scene inference for 3D object compositing. ACM Trans. Gr. (TOG) 33(3), 32 (2014)

    MATH  Google Scholar 

  6. Gastal, E.S., Oliveira, M.M.: High-order recursive filtering of non-uniformly sampled signals for image and video processing. Eurographics 34(2), 81–93 (2015)

    Google Scholar 

  7. Liao, J., Lima, R.S., Nehab, D., Hoppe, H., Sander, P.V., Yu, J.: Automating image morphing using structural similarity on a halfway domain. ACM Trans. Gr. (TOG) 33(5), 168 (2014)

    Google Scholar 

  8. Xue, S., Agarwala, A., Dorsey, J., Rushmeier, H.: Understanding and improving the realism of image composites. ACM Trans. Gr. (TOG) 31(4), 84(1)–84(10) (2012)

    Google Scholar 

  9. Tralic, D., Zupancic, I., Grgic,S., Grgic, M.: CoMoFoD—new database for copy–move forgery detection. In: Proceedings of 55th ELMAR International Symposium, Zadar, Croatia, pp. 49–54 (2013)

  10. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A sift-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)

    Article  Google Scholar 

  11. Schetinger, V., Iuliani, M., Piva, A., Oliveira, M.M.: Digital Image Forensics vs. Image Composition: An Indirect Arms Race. arXiv:1601.03239 (2016)

  12. Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226–245 (2013)

    Article  Google Scholar 

  13. Kamenicky, J., Bartos, M., Flusser, J., Mahdian, B., Kotera, J., Novozamsky, A., Saic, S., Sroubek, F., Sorel, M., Zita, A.: PIZZARO: Forensic analysis and restoration of image and video data. Forensic Sci. Int. 264, 153–166 (2016)

    Article  Google Scholar 

  14. Pandey, R., Singh, S., Shukla, K.: Passive forensics in image and video using noise features: a review. Digit. Investig. 19(1), 1–28 (2016)

    Article  Google Scholar 

  15. Redi, J.A., Taktak, W., Dugelay, J.-L.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)

    Article  Google Scholar 

  16. Qazi, T., Hayat, K., Khan, S.U., Madani, S.A., Khan, I.A., Kolodziej, J., Li, H., Lin, W., Yow, K.C., Xu, C.Z.: Survey on blind image forgery detection. IET Image Process. 7(7), 660–670 (2013)

    Article  Google Scholar 

  17. Satpathy, A., Jiang, X., Eng, H.L.: LBP-based edge-texture features for object recognition. IEEE Trans. Image Process. 23(5), 1953–1964 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chamlawi, R., Khan, A., Usman, I.: Authentication and recovery of images using multiple watermarks. Comput. Electr. Eng. 36(3), 578–584 (2010)

    Article  MATH  Google Scholar 

  19. Lee, T.-Y., Lin, S.D.: Dual watermark for image tamper detection and recovery. Pattern Recogn. 41(11), 3497–3506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prathap, I., Natarajan, V., Anitha, R.: Hybrid robust watermarking for color images. Comput. Electr. Eng. 40(3), 920–930 (2014)

    Article  Google Scholar 

  21. Al-Qershi, O.M., Khoo, B.E.: Passive detection of copy–move forgery in digital images: state-of-the-art. Forensic Sci. Int. 231(1), 284–295 (2013)

    Article  Google Scholar 

  22. Korus, P.: Digital image integrity–a survey of protection and verification techniques. Digit. Signal Process. 71(5), 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  23. Hussain, M., Wahab, A.W.A., Idris, Y.I.B., Ho, A.T., Jung, K.-H.: Image steganography in spatial domain: a survey. Signal Process. Image Commun. 65, 46–66 (2018)

    Article  Google Scholar 

  24. Farid, H.: Detecting Digital Forgeries Using Bispectral Analysis, Technical Report AIM-1657, AI Lab. Massachusetts Institute of Technology, Cambridge, USA (1999)

  25. Ng, T., Chang, S.: A model for image splicing. In: Proceedings of International Conference on Image Processing Singapore, pp. 1169–1172 (2004)

  26. Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: Proceedings of International Symposium on Circuits and Systems, Vancouver, Canada, pp. 688–691 (2004)

  27. Ng, T.T., Chang, S.F., Sun, Q.: A data set of authentic and spliced image blocks. Columbia University, ADVENT Tech. Rep., pp. 203–204 (2004)

  28. Wang, W., Dong, J., Tan, T.: Effective image splicing detection based on image chroma. In: Proceedings of 16th IEEE International Conference on Image Processing, Cairo, Egypt, pp. 1257–1260 (2009)

  29. Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of Markov Chain. In: Proceedings of 17th IEEE International Conference on Image Processing Hong Kong, pp. 2101–2104 (2010)

  30. Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Proceedings of International Workshop on Digital Watermarking, Berlin, Germany, pp. 12–22 (2010)

  31. Muhammad, G., Al-Hammadi, M., Hussain, M., Bebis, G.: Image forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. 25(4), 985–995 (2014)

    Article  Google Scholar 

  32. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy–move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  33. Rota, P., Sangineto, E., Conotter, V., Pramerdorfer, C.: Bad teacher or unruly student: can deep learning say something in image forensics analysis? In: Proceedings of 23rd International Conference on Pattern Recognition, Cancún, Mexico, pp. 2503–2508 (2016)

  34. Hussain, M., Qasem, S., Bebis, G., Muhammad, G., Aboalsamh, H., Mathkour, H.: Evaluation of image forgery detection using multi-scale Weber local descriptors. Int. J. Artif. Intell. Tools 24(4), 1–28 (2015)

    Article  Google Scholar 

  35. Cattaneo, G., Roscigno, G., Petrillo, U.F.: Improving the experimental analysis of tampered image detection algorithms for biometric systems. Pattern Recogn. Lett. 113(1), 93–101 (2017)

    Google Scholar 

  36. Lin, Z., He, J., Tang, X., Tang, C.-K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)

    Article  MATH  Google Scholar 

  37. Pham, N.T., Lee, J.-W., Kwon, G.-R., Park, C.-S.: Efficient image splicing detection algorithm based on markov features. Multimed. Tools Appl. 78(9), 12405–12419 (2019)

    Article  Google Scholar 

  38. Wang, L., Kamata, S.-i.: Forgery image detection via mask filter banks based CNN. In: Proceedings of 10th International Conference on Graphics and Image Processing, Chengdu, China, pp. 1–6 (2019)

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, pp. 770–778 (2016)

  40. Yan, Y., Ren, W., Cao, X.: Recolored image detection via a deep discriminative model. IEEE Trans. Inf. Forensics Secur. 14(1), 5–17 (2019)

    Article  Google Scholar 

  41. Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive color image splicing detection. EURASIP J. Adv. Signal Process. 2012(1), 1–11 (2012)

    Article  Google Scholar 

  42. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 886–893 (2005)

  43. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  44. Webb, A.R.: Statistical Pattern Recognition. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  45. Dong, J., Wang, W., Tan, T.: CASIA image tampering detection evaluation database. In: Proceedings of IEEE China Summit and International Conference on Signal and Information Processing Xi’an, China, pp. 422–426 (2013)

  46. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  47. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  48. Cristianini, N., Shawe Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  49. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  50. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27:1–27:10 (2011)

    Google Scholar 

  51. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  52. Hsu, Y.-F., Chang, S.-F: Detecting image splicing using geometry invariants and camera characteristics consistency. In: Proceedings of IEEE International Conference on Multimedia and Expo. Toronto, Canada, pp. 549–552 (2006)

  53. Farid, H.: Photo tampering throughout history (2011). http://ww.cs.dartmouth.edu/farid/research/digitaltampering. Accessed 23 June 2017

  54. Richao, C., Gaobo, Y., Ningbo, Z.: Detection of object-based manipulation by the statistical features of object contour. Forensic Sci. Int. 236, 164–169 (2014)

    Article  Google Scholar 

  55. Su, L., Huang, T., Yang, J.: A video forgery detection algorithm based on compressive sensing. Multimed. Tools Appl. 74(17), 1–16 (2014)

    Google Scholar 

  56. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Proceedings of Australasian Joint Conference on Artificial Intelligence, Berlin, Germany, pp. 1015–1021 (2006)

  57. Hussain, M., Wajid, S.K., Elzaart, A., Berbar, M.: A comparison of SVM kernel functions for breast cancer detection. In Proceedings of International Conference on Computer Graphics, Imaging and Visualization (CGIV), Singapore, Singapore, pp. 145–150 (2011)

  58. Alahmadi, A., Hussain, M., Aboalsamh, H., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. SIViP 11(1), 81–88 (2017)

    Article  Google Scholar 

  59. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy–move forgeries in images. In Proceedings of IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016)

  60. Shen, X., Shi, Z., Chen, H.: Splicing image forgery detection using textural features based on the grey level co-occurrence matrices. IET Image Process. 11(1), 44–53 (2016)

    Article  Google Scholar 

  61. Goh, J., Thing, V.L.: A hybrid evolutionary algorithm for feature and ensemble selection in image tampering detection. Int. J. Electron. Secur. Digit. Forensics 7(1), 76–104 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by Higher Education Commission (HEC) Pakistan under International Research Support Initiative Program (IRSIP), grant # 1-8/HEC/HRD/2017/6950, and under Pakistan Program for Collaborative Research (PPCR), grant # 20-8/HEC/R&D/PPCR/2017, for the visit at School of Computer Science and Informatics, Cardiff University, UK, and PDE-GIR project which has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 778035, for the visit at Bournemouth University, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Habib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, K., Sun, X., Rosin, P.L. et al. Edge–texture feature-based image forgery detection with cross-dataset evaluation. Machine Vision and Applications 30, 1243–1262 (2019). https://doi.org/10.1007/s00138-019-01048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-019-01048-2

Keywords

Navigation