Skip to main content

Advertisement

Log in

A novel method for breast mass segmentation: from superpixel to subpixel segmentation

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, an effective method is proposed for breast mass segmentation using a superpixel generation and curve evolution method. The simple linear iterative clustering method and density-based spatial clustering of applications with noise method are applied to generate superpixels in mammograms at first. Thereafter, a region of interesting (ROI) that contains the breast mass is built on the superpixel generation results. Finally, the image patch and the position of the manual labeled seed are used to build the prior knowledge for the level set method driven by the local Gaussian distribution fitting energy and evolve the curve to capture the edge of breast mass in ROI. Experimental results on mammogram data set demonstrate that the proposed method shows superior performance in contrast to some well-known methods in breast mass segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeSantis, C., Ma, J., Bryan, L., et al.: Breast cancer statistics, 2013. CA Cancer J. Clin. 64(1), 52–62 (2014)

    Article  Google Scholar 

  2. Harbeck, N., Gnant, M.: Breast cancer. Radiol. Clin. North Am. 21(1), 51–65 (2016)

    Google Scholar 

  3. Murkies, A., Dalais, F.S., Briganti, E.M., et al.: Phytoestrogens and breast cancer in postmenopausal women: a case control study. Menopause-the J. North Am. Menopause Soc. 7(5), 289 (2016)

    Article  Google Scholar 

  4. Veronese, S.M., Gambacorta, M., Gottardi, O., et al.: Proliferation index as a prognostic marker in breast cancer. Cancer 71(12), 3926–3931 (2015)

    Article  Google Scholar 

  5. Klemm, M., Craddock, I.J., Preece, A., et al.: Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging. Radio Sci. 43(6), 1–15 (2016)

    Google Scholar 

  6. Bower, J.E., Ganz, P.N.: Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom. Med. 67(2), 277–280 (2016)

    Article  Google Scholar 

  7. Song, H., Ramus, S.J., Kjaer, S.K., et al.: Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Hum. Mol. Genet. 18(12), 2297–2304 (2016)

    Article  Google Scholar 

  8. Brown, R.S., Wahl, R.L.: Overexpression of Glut-1 glucose transporter in human breast cancer. An Immunohistochem. Study. Cancer 72(10), 2979–2985 (2015)

    Google Scholar 

  9. Rouhi, R., Jafari, M., Kasaei, S., et al.: Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 42(3), 990–1002 (2015)

    Article  Google Scholar 

  10. Dong, Z., Yu, L., Yan, Y., et al.: A region-based segmentation method for ultrasound images in HIFU therapy. Med. Phys. 43(6), 2975–2989 (2016)

    Google Scholar 

  11. Shi, C., Cheng, Y., Liu, F., et al.: A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recognit. 50(C), 88–106 (2016)

    Article  Google Scholar 

  12. Li, D., Zang, P., Chai, X., et al.: Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models. Med. Phys. 43(10), 5426 (2016)

    Article  Google Scholar 

  13. Hao, L., Zhang, S., Rui, M., et al.: Ultrasound intima-media thickness measurement of the carotid artery using ant colony optimization combined with a curvelet-based orientation-selective filter. Med. Phys. 43(4), 1795 (2016)

    Article  Google Scholar 

  14. Javaid, Z., Boocock, M.G., Mcnair, P.J., et al.: Contour interpolated radial basis functions with spline boundary correction for fast 3D reconstruction of the human articular cartilage from MR images. Med. Phys. 43(3), 1187 (2016)

    Article  Google Scholar 

  15. Phellan, R., Falcão, A.X., Udupa, J.K.: Medical image segmentation via atlases and fuzzy object models: improving efficacy through optimum object search and fewer models. Med. Phys. 43(1), 401 (2016)

    Article  Google Scholar 

  16. Namías, R., D’Amato, J.P., Del, F.M., et al.: Multi-object segmentation framework using deformable models for medical imaging analysis. Med. Biol. Eng. Compu. 54(8), 1181–1192 (2016)

    Article  Google Scholar 

  17. Wang, S., Lan, D.I., Liang, J.: Multi-dimensional fuzzy clustering image segmentation algorithm based on kernel metric and local information. Electron. Lett. 51(9), 693–695 (2015)

    Article  Google Scholar 

  18. Dong, L., Smyl, D., Du, J.: A parametric level set based approach to difference imaging in electrical impedance tomography. IEEE Trans. Med. Imaging 38(1), 145–155 (2018)

    Google Scholar 

  19. Feng, Y., Dong, F., Xia, X., et al.: An adaptive Fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images. Med. Phys. 44(7), 3752 (2017)

    Article  Google Scholar 

  20. Chen, Y., Zhang, H., Zheng, Y., et al.: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation. Pattern Recognit. 60(C), 778–792 (2016)

    Article  Google Scholar 

  21. Dong, X., Shen, J., Shao, L., et al.: Sub-Markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y.D., Muhammad, K., Tang, C.: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimedia Tools Appl. 77(17), 22821–22839 (2018)

    Article  Google Scholar 

  23. Zhang, Y.D., Zhang, Y., Hou, X.X., et al.: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools Appl. 77(9), 10521–10538 (2017)

    Article  Google Scholar 

  24. Wang, G., Li, W., Zuluaga, M.A., et al.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

  25. Zhang, Y.D., Pan, C.C., Sun, J.D., et al.: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 28, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  26. Zhan, T., Yu, R., Zheng, Y., et al.: Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images. Biomed. Signal Process. Control 31, 52–62 (2017)

    Article  Google Scholar 

  27. Annegreet, V.O., Achterberg, H.C., Vernooij, M.W., et al.: Transfer learning for image segmentation by combining image weighting and kernel learning. IEEE Trans. Med. Imaging 38(1), 213–224 (2019)

    Article  Google Scholar 

  28. Sun, Z., Qiao, Y., Lelieveldt, B.P.F., et al.: Integrating spatial-anatomical regularization and structure sparsity into SVM: improving interpretation of Alzheimer’s disease classification. Neuroimage 178, 445 (2014)

    Article  Google Scholar 

  29. Zhang, Y.D., Zhao, G., Sun, J., et al.: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimedia Tools Appl. 77(17), 22629–22648 (2018)

    Article  Google Scholar 

  30. Tao, Y., Lo, S.C.B., Freedman, M.T., et al.: Multilevel learning-based segmentation of ill-defined and spiculated masses in mammograms. Med. Phys. 37(11), 5993–6002 (2010)

    Article  Google Scholar 

  31. Berber, T., Alpkocak, A., Balci, P., et al.: Breast mass contour segmentation algorithm in digital mammograms. Comput. Methods Programs Biomed. 110(2), 150–159 (2013)

    Article  Google Scholar 

  32. Song, E., Jiang, L., Jin, R., et al.: Breast mass segmentation in mammography using plane fitting and dynamic programming. Acad. Radiol. 16(7), 826–835 (2009)

    Article  Google Scholar 

  33. Wang, X., Guo, Y., Wang, Y., et al.: Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput. Appl. 1–13 (2017)

  34. Kallenberg, M., Petersen, K., Nielsen, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Article  Google Scholar 

  35. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  36. Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34), 226–231 (1996)

    Google Scholar 

  37. Wang, L., He, L., Mishra, A., et al.: Active contours driven by local Gaussian distribution fitting energy. Sig. Process. 89(12), 2435–2447 (2009)

    Article  MATH  Google Scholar 

  38. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR IEEE, vol. 2, 60–65 (2005)

  39. Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23(4), 621–635 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of High Education Institutions of Jiangsu Province, China (Nos. 18KJB50030, 18KJB520042 and 17KJB520033), the National Natural Science Foundation of China under grants (Nos. 61502206, 61772277, and 61672291), the Nature Science Foundation of Jiangsu Province under grants (Nos. BK20150523 and BK20171494). The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Chen, Y., Sheng, F. et al. A novel method for breast mass segmentation: from superpixel to subpixel segmentation. Machine Vision and Applications 30, 1111–1122 (2019). https://doi.org/10.1007/s00138-019-01020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-019-01020-0

Keywords

Navigation