Skip to main content
Log in

Osteonekrosen – gravierende Therapiefolge bei akuter lymphoblastischer Leukämie

Osteonecrosis—severe side effect of treatment for acute lymphoblastic leukemia

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Osteonekrosen treten als schwerwiegende Komplikation bei Kindern, Jugendlichen und Erwachsenen mit akuter lymphoblastischer Leukämie akut unter Therapie aber auch als Spätfolge auf. Diese gehen mit starken Schmerzen, Einschränkungen der Mobilität, Gelenkdestruktion und erheblicher Langzeitmorbidität einher. Die kumulative Inzidenz bei Jugendlichen und jungen Erwachsenen beträgt 11–20 %. Bei symptomatischen Patienten sind häufig multiple Gelenke betroffen, die multiple Gelenkbeteiligung ist ein Risikofaktor für einen schweren Verlauf. Leukämieassoziierte Osteonekrosen haben eine multifaktorielle Genese. Risikofaktoren umfassen v. a. die Gabe von Kortikosteroiden und Asparaginase. Diese verursachen eine Hypertriglyzeridämie, Hypercholesterolämie und arterielle Hypertonie, die die Blutzufuhr zum Knochen beeinträchtigen können. Weitere Risikofaktoren sind Bakteriämien, genetische Faktoren und eine Stammzelltransplantation. Die Therapie ist herausfordernd und bisher nicht evidenzbasiert, präventive Ansätze wurden bisher vor allem in präklinischen Modellen getestet.

Abstract

Osteonecrosis occurs as an acute and long-term serious side effect in children, adolescents, and adults with acute lymphoblastic leukemia. It is associated with severe pain and reduced mobility, ultimately leading to joint destruction and significant long-term morbidity. The cumulative incidence ranges from 11 to 20% in adolescents and young adults. In symptomatic patients, multiple joints are frequently affected, which in turns poses a risk factor for the development of severe osteonecrosis. The genesis of leukemia-associated osteonecrosis is multifactorial. Risk factors include the use of corticosteroids and asparaginase. These exert their effects on the blood supply to the bone through hypercholesterolemia, hypertriglyceridemia, and hypertension. Bacteriemia, genetic susceptibility, and stem cell transplantation pose additional risk factors. The treatment of osteonecrosis is challenging and not evidence based. Preventive measurements have as yet mainly been tested in preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ALL:

Akute lymphoblastische Leukämie

BFM :

Berlin-Frankfurt-Münster-Studiengruppe

CCG :

Children’s Cancer Group

DFCI :

Dana-Farber Cancer Institute

ECOG :

Eastern Cooperative Oncology Group

NOPHO :

Nordic Society of Pediatric Hematology and Oncology

SNV :

Einzelnukleotid-Polymorphismen

Literatur

  1. Pui CH et al (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33(27):2938–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mody R et al (2008) Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood 111(12):5515–5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 〈dirjahrbuch2015d.pdf〉.

  4. Mostoufi-Moab S, Ward LM (2019) Skeletal morbidity in children and adolescents during and following cancer therapy. Horm Res Paediatr 91(2):137–151

    Article  CAS  PubMed  Google Scholar 

  5. Powell C, Chang C, Gershwin ME (2011) Current concepts on the pathogenesis and natural history of steroid-induced osteonecrosis. Clin Rev Allergy Immunol 41(1):102–113

    Article  CAS  PubMed  Google Scholar 

  6. Lafforgue P (2006) Pathophysiology and natural history of avascular necrosis of bone. Joint Bone Spine 73(5):500–507

    Article  CAS  PubMed  Google Scholar 

  7. Barr RD, Sala A (2008) Osteonecrosis in children and adolescents with cancer. Pediatr Blood Cancer 50(2 Suppl):483–485 (discussion 486)

    Article  PubMed  Google Scholar 

  8. Janke LJ et al (2013) Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis. Am J Pathol 183(1):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunstreich M et al (2016) Osteonecrosis in children with acute lymphoblastic leukemia. Haematologica 101(11):1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mattano LA Jr et al (2000) Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children’s Cancer Group. J Clin Oncol 18(18):3262–3272

    Article  PubMed  Google Scholar 

  11. Strauss AJ et al (2001) Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 19(12):3066–3072

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro RC et al (2001) Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia 15(6):891–897

    Article  CAS  PubMed  Google Scholar 

  13. Niinimaki RA et al (2007) High body mass index increases the risk for osteonecrosis in children with acute lymphoblastic leukemia. J Clin Oncol 25(12):1498–1504

    Article  PubMed  Google Scholar 

  14. Arico M et al (2003) Osteonecrosis: an emerging complication of intensive chemotherapy for childhood acute lymphoblastic leukemia. Haematologica 88(7):747–753

    CAS  PubMed  Google Scholar 

  15. Burger B et al (2005) Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL)—experiences from trial ALL-BFM 95. Pediatr Blood Cancer 44(3):220–225

    Article  PubMed  Google Scholar 

  16. Kuhlen M, Kunstreich M, Gokbuget N (2021) Osteonecrosis in adults with acute lymphoblastic leukemia: an unmet clinical need. Hemasphere 5(4):e544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mogensen SS et al (2018) Comparing osteonecrosis clinical phenotype, timing, and risk factors in children and young adults treated for acute lymphoblastic leukemia. Pediatr Blood Cancer 65(10):e27300

    Article  PubMed  Google Scholar 

  18. Mattano LA Jr et al (2012) Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol 13(9):906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel B et al (2008) High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia 22(2):308–312

    Article  CAS  PubMed  Google Scholar 

  20. Valtis YK et al (2020) Orthopedic toxicity among adolescents and young adults treated on DFCI ALL consortium trials. Blood 136(Supplement 1):31–32

    Article  Google Scholar 

  21. Kawedia JD et al (2011) Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 117(8):2340–2347 (quiz 2556)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Relling MV et al (2004) Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol 22(19):3930–3936

    Article  PubMed  Google Scholar 

  23. Lackner H et al (2005) Aseptic osteonecrosis in children and adolescents treated for hemato-oncologic diseases: a 13-year longitudinal observational study. J Pediatr Hematol Oncol 27(5):259–263

    Article  PubMed  Google Scholar 

  24. te Winkel ML et al (2011) Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol 29(31):4143–4150

    Article  Google Scholar 

  25. Padhye B et al (2016) Incidence and outcome of osteonecrosis in children and adolescents after intensive therapy for acute lymphoblastic leukemia (ALL). Cancer Med 5(5):960–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inaba H et al (2020) Incidence of hip and knee osteonecrosis and their associations with bone mineral density in children with acute lymphoblastic leukaemia. Br J Haematol 189(4):e177–e181

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Atteveld JE et al (2021) Effect of post-consolidation regimen on symptomatic osteonecrosis in three DCOG acute lymphoblastic leukemia protocols. Haematologica 106(4):1198–1201

    Article  PubMed  PubMed Central  Google Scholar 

  28. te Winkel ML et al (2008) Impaired dexamethasone-related increase of anticoagulants is associated with the development of osteonecrosis in childhood acute lymphoblastic leukemia. Haematologica 93(10):1570–1574

    Article  Google Scholar 

  29. Girard P et al (2013) Symptomatic osteonecrosis in childhood leukemia survivors: prevalence, risk factors and impact on quality of life in adulthood. Haematologica 98(7):1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAvoy S et al (2010) Corticosteroid dose as a risk factor for avascular necrosis of the bone after hematopoietic cell transplantation. Biol Blood Marrow Transplant 16(9):1231–1236

    Article  CAS  PubMed  Google Scholar 

  31. Möricke A et al (2016) Dexamethasone vs. prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood 127(17):2101–2112

    Article  PubMed  Google Scholar 

  32. Kadan-Lottick NS et al (2008) Osteonecrosis in adult survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 26(18):3038–3045

    Article  PubMed  PubMed Central  Google Scholar 

  33. Domenech C et al (2014) Dexamethasone (6 mg/m2/day) and prednisolone (60 mg/m2/day) were equally effective as induction therapy for childhood acute lymphoblastic leukemia in the EORTC CLG 58951 randomized trial. Haematologica 99(7):1220–1227

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitchell CD et al (2005) Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 129(6):734–745

    Article  CAS  PubMed  Google Scholar 

  35. Finch ER et al (2020) Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatr Blood Cancer 67(1):e28040

    Article  CAS  PubMed  Google Scholar 

  36. Yang L et al (2008) Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. J Clin Oncol 26(12):1932–1939

    Article  CAS  PubMed  Google Scholar 

  37. Liu C et al (2016) Asparaginase potentiates glucocorticoid-induced osteonecrosis in a mouse model. PLoS One 11(3):e151433

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mogensen SS et al (2017) Hyperlipidemia is a risk factor for osteonecrosis in children and young adults with acute lymphoblastic leukemia. Haematologica 102(5):e175–e178

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karol SE et al (2019) Asparaginase combined with discontinuous dexamethasone improves antileukemic efficacy without increasing osteonecrosis in preclinical models. PLoS One 14(5):e216328

    Article  PubMed  PubMed Central  Google Scholar 

  40. Janke LJ et al (2019) Hypertension is a modifiable risk factor for osteonecrosis in acute lymphoblastic leukemia. Blood 134(12):983–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Finch ER et al (2019) Bloodstream infections exacerbate incidence and severity of symptomatic glucocorticoid-induced osteonecrosis. Pediatr Blood Cancer 66(6):e27669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell S et al (2009) Predictors of avascular necrosis of bone in long-term survivors of hematopoietic cell transplantation. Cancer 115(18):4127–4135

    Article  PubMed  Google Scholar 

  43. Kuhlen M et al (2018) Low incidence of symptomatic osteonecrosis after allogeneic HSCT in children with high-risk or relapsed ALL—results of the ALL-SCT 2003 trial. Br J Haematol 183(1):104–109

    Article  PubMed  Google Scholar 

  44. Kaste SC et al (2004) Bone mineral density and osteonecrosis in survivors of childhood allogeneic bone marrow transplantation. Bone Marrow Transplant 33(4):435–441

    Article  CAS  PubMed  Google Scholar 

  45. Kaste S et al (2020) Pre- and post-magnetic resonance imaging of hips and knees for detecting osteonecrosis in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant 55(9):1837–1839

    Article  PubMed  Google Scholar 

  46. Karol SE et al (2015) Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood 126(15):1770–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karol SE et al (2016) Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood 127(5):558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmiegelow K et al (2016) Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol 17(6):e231–e239

    Article  PubMed  Google Scholar 

  49. Niinimaki T et al (2015) The classification of osteonecrosis in patients with cancer: validation of a new radiological classification system. Clin Radiol 70(12):1439–1444

    Article  CAS  PubMed  Google Scholar 

  50. Inaba H et al (2020) Whole-joint magnetic resonance imaging to assess osteonecrosis in pediatric patients with acute lymphoblastic lymphoma. Pediatr Blood Cancer 67(8):e28336

    Article  PubMed  PubMed Central  Google Scholar 

  51. Te Winkel ML et al (2014) Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia. Haematologica 99(3):430–436

    Article  Google Scholar 

  52. Kuhlen M et al (2017) Osteonecrosis in children and adolescents with acute lymphoblastic leukemia: a therapeutic challenge. Blood Adv 1(14):981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mattano LA et al (2017) Osteonecrosis (ON) is associated with improved event free survival (EFS) in high-risk acute lymphoblastic leukemia (HR-ALL): results of Children’s Oncology Group (COG) study AALL0232. Pediatr Blood Cancer 64(Suppl 3):O-21

    Google Scholar 

  54. Finch ER et al (2021) Fenofibrate reduces osteonecrosis without affecting antileukemic efficacy in dexamethasone treated mice. Haematologica 106(8):2095–2101

    Article  CAS  PubMed  Google Scholar 

  55. Janke LJ et al (2021) Effects of zoledronic acid on osteonecrosis and acute lymphoblastic leukemia treatment efficacy in preclinical models. Pediatr Blood Cancer 68(10):e29183

    Article  CAS  PubMed  Google Scholar 

  56. Laumann RD et al (2021) Effect of fish oil supplementation on hyperlipidemia during childhood acute lymphoblastic leukemia treatment—a pilot study. Nutr Cancer 73(9):1816–1820

    Article  CAS  PubMed  Google Scholar 

  57. Niinimaki RA et al (2008) Osteonecrosis in children treated for lymphoma or solid tumors. J Pediatr Hematol Oncol 30(11):798–802

    Article  CAS  PubMed  Google Scholar 

  58. Kaste SC et al (2015) Utility of early screening magnetic resonance imaging for extensive hip osteonecrosis in pediatric patients treated with glucocorticoids. J Clin Oncol 33(6):610–615

    Article  PubMed  PubMed Central  Google Scholar 

  59. Krull K et al (2017) Osteonecrosis develops independently from radiological leukemic infiltration of bone in adolescents with acute lymphoblastic leukemia—first findings of the OPAL trial. Leuk Lymphoma 58(10):2363–2369

    Article  PubMed  Google Scholar 

  60. Krull K et al (2019) Osteonecrosis in children with acute lymphoblastic leukemia at initial diagnosis and prior to any chemotherapy. Leuk Lymphoma 60(1):78–84

    Article  PubMed  Google Scholar 

  61. Mogensen SS et al (2017) Early presentation of osteonecrosis in acute lymphoblastic leukemia: two children from the Nordic and Baltic cohort. Pediatr Blood Cancer 64(11):e26624

    Article  Google Scholar 

  62. Hernigou P et al (2016) Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress. Clin Orthop Surg 8(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kang JS et al (2018) Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: a matched pair control study with simple core decompression. Stem Cell Res Ther 9(1):274

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vrooman LM et al (2013) Postinduction dexamethasone and individualized dosing of Escherichia Coli L‑asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study—Dana-Farber Cancer Institute ALL Consortium Protocol 00-01. J Clin Oncol 31(9):1202–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Toft N et al (2016) Toxicity profile and treatment delays in NOPHO ALL2008-comparing adults and children with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol 96(2):160–169

    Article  CAS  PubMed  Google Scholar 

Download references

Förderung

Die OPAL-Studie wurde durch die Deutsche Kinderkrebsstiftung (DKS 2011.11) gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kuhlen.

Ethics declarations

Interessenkonflikt

M. Kuhlen, M. Kunstreich, N. Gökbuget und G. Escherich geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autorinnen durchgeführten Studien an Menschen oder Tieren. Die OPAL-Studie wurde durch die Ethikkommission der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf (Nr. 3707) und durch die zuständige Ethikkommission der Ludwig-Maximilians-Universität München (Nr. 20-140) positiv begutachtet.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhlen, M., Kunstreich, M., Gökbuget, N. et al. Osteonekrosen – gravierende Therapiefolge bei akuter lymphoblastischer Leukämie. Orthopädie 51, 792–799 (2022). https://doi.org/10.1007/s00132-022-04301-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-022-04301-1

Schlüsselwörter

Keywords

Navigation