Skip to main content
Log in

Time to Safeguard the Future Generations from the Omnipresent Microplastics

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Microplastics (MPs) as a ubiquitous environmental pollutant have drawn growing attention, and it is concerning that children are more sensitive to MPs than adults. Unfortunately, information about the link between children and MPs is insufficient. Therefore, we review the sources and exposure routes of children to MPs and collect evidence for the potential risks. Children can ingest and/or inhale MPs derived from various foodstuffs and plastic products. Despite the limited knowledge on the toxicity to humans, current studies have proved the accumulation and translocation of MPs in different tissues and organs. Main damages including cytotoxicity, neurotoxicity, and immunotoxicity can be caused by pristine polymers and/or co-contaminants. There is much more to be understood about MPs, especially their health effects, and this study has made it clear that it is time to protect our future generations from the threat of MPs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County. Iran Environ Pollut 244:153–164

    Article  CAS  Google Scholar 

  • Adam AAH (2009) Milk adulteration by adding water and starch at Khartoum state. Pak J Nutr 8:439–440

    Article  CAS  Google Scholar 

  • Akhbarizadeh R, Dobaradaran S, Amouei Torkmahalleh M, Saeedi R, Aibaghi R, Faraji Ghasemi F (2021) Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ Res 192:110339

    Article  CAS  Google Scholar 

  • Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978

    Article  CAS  Google Scholar 

  • Barboza LGA, Frias JPGL, Booth AM, Vieira LR, Masura J, Baker J, Foster G, Guilhermino L (2019) Microplastics Pollution in the Marine Environment In: Sheppard C (ed) World Seas: an Environmental Evaluation, 2rd edn. Academic Press, pp. 329–351.

  • Bellas J, Gil I (2020) Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa. Environ Pollut 260:114059

    Article  CAS  Google Scholar 

  • Celeiro M, Armada D, Dagnac T, de Boer J, Llompart M (2021) Hazardous compounds in recreational and urban recycled surfaces made from crumb rubber. Compliance with current regulation and future perspectives. Sci Total Environ 755: 142566.

  • Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ (2015) Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7:736–746

    Article  CAS  Google Scholar 

  • Çobanoğlu H, Belivermiş M, Sıkdokur E, Kılıç Ö, Çayır A (2021) Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere, 129805.

  • Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE (2019) Human consumption of microplastics. Environ Sci Technol 53:7068–7074

    Article  CAS  Google Scholar 

  • Cui RX, Kim SW, An Y-J (2017) Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci Rep 7:12095

    Article  CAS  Google Scholar 

  • Dawson AL, Santana MFM, Miller ME, Kroon FJ (2021) Relevance and reliability of evidence for microplastic contamination in seafood: A critical review using Australian consumption patterns as a case study. Environ Pollut 276:116684

    Article  CAS  Google Scholar 

  • Dehghani S, Moore F, Akhbarizadeh R (2017) Microplastic pollution in deposited urban dust, Tehran metropolis. Iran Environ Sci Pollut Res 24:20360–20371

    Article  CAS  Google Scholar 

  • Deng YF, Yan ZH, Shen RQ, Huang YC, Ren HQ, Zhang Y (2021) Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J Hazard Mater 406:124644

    Article  CAS  Google Scholar 

  • Deng YF, Zhang Y, Lemos B, Ren HQ (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687

    Article  Google Scholar 

  • Diaz-Basantes MF, Conesa JA, Fullana A (2020) Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminants. Sustainability 12.

  • Domenech J, Marcos R (2021) Pathways of human exposure to microplastics, and estimation of the total burden. Curr Opin Food Sci 39:144–151

    Article  Google Scholar 

  • Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458

    Article  CAS  Google Scholar 

  • Eyles J, Alpar HO, Field WN, Lewis DA, Keswick M (1995) The transfer of polystyrene microspheres from the gastrointestinal tract to the circulation after oral administration in the rat. J Pharm Pharmacol 47:561–565

    Article  CAS  Google Scholar 

  • Eyles JE, Bramwell VW, Williamson ED, Alpar HO (2001) Microsphere translocation and immunopotentiation in systemic tissues following intranasal administration. Vaccine 19:4732–4742

    Article  CAS  Google Scholar 

  • German Environment Ministry and the Robert Koch Institute: Alarming Levels of Dangerous Plastics in Children's Bodies, Common Dreams, Published on Saturday, September 14, 2019 by Common Dreams. https://www.commondreams.org/news/2019/09/14/german-study-alarming-levels-dangerous-plastics-childrens-bodies

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3, e1700782.

  • Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Article  CAS  Google Scholar 

  • Jeong C-B, Kang H-M, Lee M-C, Kim D-H, Han J, Hwang D-S, Souissi S, Lee S-J, Shin K-H, Park HG, Lee J-S (2017) Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep 7:41323

    Article  CAS  Google Scholar 

  • Ju P, Zhang Y, Zheng YF, Gao FL, Jiang FH, Li JX, Sun CJ (2020) Probing the toxic interactions between polyvinyl chloride microplastics and Human Serum Albumin by multispectroscopic techniques. Sci Total Environ 734:139219

    Article  CAS  Google Scholar 

  • Karapanagioti HK, Endo S, Ogata Y, Takada H (2011) Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece. Mar Pollut Bull 62:312–317

    Article  CAS  Google Scholar 

  • Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13:e0194970

    Article  CAS  Google Scholar 

  • Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC (2020) Branded milks – Are they immune from microplastics contamination? Sci Total Environ 714:136823

    Article  CAS  Google Scholar 

  • Li DZ, Shi YH, Yang LM, Xiao LW, Kehoe DK, Gun’ko YK, Boland JJ, Wang JJ (2020) Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food 1:746–754

    Article  Google Scholar 

  • Li LZ, Luo YM, Li R, Zhou Q, Peijnenburg WJGM, Yin N, Yang J, Tu C, Zhang YC (2020) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3:929–937

    Article  Google Scholar 

  • Li LZ, Zhou Q, Yin N, Tu C, Luo YM (2019) Uptake and accumulation of microplastics in an edible plant. Chin Sci Bull 64:928–934

    Article  Google Scholar 

  • Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:2136–2140

    Article  CAS  Google Scholar 

  • Liebezeit G, Liebezeit E (2014) Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:1574–1578

    Article  CAS  Google Scholar 

  • Liu S, Fang S, Xiang Z, Chen X, Song Y, Chen C, Ouyang G (2021) Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. J Hazard Mater 407:124849

    Article  CAS  Google Scholar 

  • Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: Comparison to polychlorinated biphenyls. Environ Sci Technol 38:2011–2020

    Article  CAS  Google Scholar 

  • Mason SA, Welch VG, Neratko J (2018) Synthetic polymer contamination in bottled water. Front Chem 6:407–407

    Article  CAS  Google Scholar 

  • Mendonca K, Hauser R, Calafat AM, Arbuckle TE, Duty SM (2014) Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health 87:13–20

    Article  CAS  Google Scholar 

  • Monti DM, Guarnieri D, Napolitano G, Piccoli R, Netti P, Fusco S, Arciello A (2015) Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. J Biotechnol 193:3–10

    Article  CAS  Google Scholar 

  • Mühlschlegel P, Hauk A, Walter U, Sieber R (2017) Lack of evidence for microplastic contamination in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:1982–1989

    Article  CAS  Google Scholar 

  • Na J, Song JY, Achar JC, Jung JH (2021) Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity. J Hazard Mater 402:123845

    Article  CAS  Google Scholar 

  • Oliviero M, Tato T, Schiavo S, Fernández-González V, Manzo S, Beiras R (2019) Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environ Pollut 247.

  • Oßmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316

    Article  CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455

    Article  CAS  Google Scholar 

  • Revel M, Châtel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Article  Google Scholar 

  • Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E (2021) Plasticenta: First evidence of microplastics in human placenta. Environ Int 146:106274

    Article  CAS  Google Scholar 

  • Rosato A, Barone M, Negroni A, Brigidi P, Fava F, Xu P, Candela M, Zanaroli G (2020) Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Sci Total Environ 705:135790

    Article  CAS  Google Scholar 

  • Sarkar DJ, Das Sarkar S, Das BK, Sahoo BK, Das A, Nag SK, Manna RK, Behera BK, Samanta S (2021) Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system. Water Res 192:116853

    Article  CAS  Google Scholar 

  • Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579–587

    Article  CAS  Google Scholar 

  • Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162

    Article  CAS  Google Scholar 

  • Sendra M, Pereiro P, Figueras A, Novoa B (2021) An integrative toxicogenomic analysis of plastic additives. J Hazard Mater 409:124975

    Article  CAS  Google Scholar 

  • Sun KL, Song Y, He FL, Jing MY, Tang JC, Liu RT (2021) A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ 773:145403

    Article  CAS  Google Scholar 

  • Tu C, Chen T, Zhou Q, Liu Y, Wei J, Waniek JJ, Luo YM (2020) Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci Total Environ 734:139237

    Article  CAS  Google Scholar 

  • Turner A, Scott JW, Green LA (2021) Rare earth elements in plastics. Sci Total Environ 774:145405

    Article  CAS  Google Scholar 

  • Wang QQ, Bai JL, Ning BA, Fan LX, Sun TQ, Fang YJ, Wu J, Li S, Duan CH, Zhang YC, Liang J, Gao ZX (2020a) Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere 254:126788

    Article  CAS  Google Scholar 

  • Wang T, Wang L, Chen QQ, Kalogerakis N, Ji R, Ma YN (2020b) Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Sci Total Environ 748:142427

    Article  CAS  Google Scholar 

  • Wu MJ, Yang CP, Du C, Liu HY (2020) Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. Ecotoxicol Environ Saf 202:110910

    Article  CAS  Google Scholar 

  • Yang DQ, Shi HH, Li L, Li JN, Jabeen K, Kolandhasamy P (2015) Microplastic pollution in table salts from China. Environ Sci Technol 49:13622–13627

    Article  CAS  Google Scholar 

  • Yang YF, Chen CY, Lu TH, Liao CM (2019) Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater 366:703–713

    Article  CAS  Google Scholar 

  • Zhang Q, Xu EG, Li JN, Chen Q, Ma LP, Zeng EY, Shi HH (2020) A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environ Sci Technol 54:3740–3751

    Article  CAS  Google Scholar 

  • Zhang WW, Ma XD, Zhang ZF, Wang Y, Wang JY, Wang J, Ma DY (2015) Persistent organic pollutants carried on plastic resin pellets from two beaches in China. Mar Pollut Bull 99:28–34

    Article  CAS  Google Scholar 

  • Zuccarello P, Ferrante M, Cristaldi A, Copat C, Grasso A, Sangregorio D, Fiore M, Oliveri Conti G (2019) Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res 157:365–371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U2032201), and the Fundamental Research Funds for the Central Universities (021114380147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Tu, C., Liu, G. et al. Time to Safeguard the Future Generations from the Omnipresent Microplastics. Bull Environ Contam Toxicol 107, 793–799 (2021). https://doi.org/10.1007/s00128-021-03252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03252-1

Keywords

Navigation