Skip to main content

Advertisement

Log in

Environmental Geochemistry of Anthropogenic Lead in Estuarine Sediments of the Jamapa River, Mexico

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The combustion of alkyl-lead gasolines was the primary anthropogenic source of Pb in the second half of the twentieth century. Previously deposited Pb-aerosols enriched the organic matter and Fe-oxi-hydroxides phases of soils, which long after continue being transported downstream to be an important source of Pb into the ocean. Geochemical partition of Pb was determined in estuarine sediments of the Jamapa River, southern Gulf of Mexico, by the Tessier’s sequential extraction protocol. The residual fraction, conformed by siliciclastic particles, contain the highest proportion of Pb (8.6 μg/g = 70%), been the main source into the ocean. However, as the organic carbon and Fe,MnO(OH) fractions, together summed the 26% of total Pb in samples, so, it is assumed that previously deposited anthropogenic Pb, from alkyl-lead gasolines, still is an important source of this element, that is transported by the Jamapa River, enriching the coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Biggins PDE, Harrison RM (1979) Atmospheric chemistry of automotive lead. Environ Sci Technol 13:558–565

    Article  CAS  Google Scholar 

  • Botello AV, Villanueva FS, Rivera RF, Velandia AL, de la Lanza GE (2017) Analysis and tendencies of metals and POPs in a sediment core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Arch Eviron Contam Toxicol 75:157–173

    Article  Google Scholar 

  • Burton ED, Philips IR, Hawker DW (2006) Factors controlling the geochemical partitioning of trace metals in estuarine sediments. Soil Sediment Contam 15:253–276

    Article  CAS  Google Scholar 

  • Cabral-Tena RA, Córdova A, López-Galindo F, Morales-Aranda AA, Reyes-Mata A, Soler-Aburto A (2019) Distribution of the bioavailable and total content of copper and lead, in river sediments of the Jamapa-Atoyac fluvial system. Mexico Environ Monit Assess 191:214

    Article  Google Scholar 

  • Chakraborty P, Chakraborty S, Vudamala K, Sarkar A, Nath BN (2016) Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry. Environ Sci Pollut Res 23:3450–3462

    Article  CAS  Google Scholar 

  • CONAGUA (Comisión Nacional del Agua, México) (2016) Atlas del agua en México. CONAGUA, CDMX

    Google Scholar 

  • Erel Y, Axelrod T, Veron A, Mahrer Y, Katsafados P, Dayan U (2002) Transboundary atmospheric lead pollution. Environ Sci Technol 36:3230–3233

    Article  CAS  Google Scholar 

  • Galloway JN, Thornton JD, Norton SA, Volchok HL, McLean RAN (1982) Trace-metals in atmospheric deposition- a review and assessment. Atmos Environ 16:1677–1700

    Article  CAS  Google Scholar 

  • Hatje V, Payne TE, Hill DM, McOrist G, Birch GF, Szymczak R (2003) Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int 29:619–629

    Article  CAS  Google Scholar 

  • Hewitt CN, Rashed MB (1988) Organic lead compunds in vehicle exhaust. Appl Organometal Chem 2:95–100

    Article  CAS  Google Scholar 

  • Horta-Puga G (2017) Geochemical partitioning of lead in biogenic carbonate sediments in a coral reef depositional environment. Mar Pollu Bull 116:71–79

    Article  CAS  Google Scholar 

  • Horta-Puga G, Cházaro-Olvera S, Winfield I, Avila-Romero M, Moreno-Ramírez M (2013) Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: spatial distribution and rainy season variability. Mar Pollut Bull 68:127–133

    Article  CAS  Google Scholar 

  • Horta-Puga G, Carriquiry JD (2014) The last two centuries of lead pollution in the southern Gulf of Mexico recorded in the annual bands of the scleractinian coral Orbicella faveolata. Bull Environ Contam Toxicol 92:567–573

    Article  CAS  Google Scholar 

  • Ip CCM, Li X-D, Zhang G, Wai OWH, Li Y-S (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323

    Article  CAS  Google Scholar 

  • Jain CK, Sharma CK (2001) Distribution of trace metals in the Hindon river system India. J Hydrol 253:81e90

    Article  Google Scholar 

  • Johnson AH, Siccama TG, Friedland AJ (1982) Spatial and temporal patterns of lead accumulation in the forest floor in the northeastern United States. J Environ Qual 11:577–580

    Article  CAS  Google Scholar 

  • Kaste JM, Bostick BC, Friedland AJ, Schroth AW, Siccama TG (2006) Fate and speciation of gasoline-derived lead in organic horizons of the northeastern USA. Soil Sci Soc Am J 70:1688–1698

    Article  CAS  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    Article  CAS  Google Scholar 

  • Li X, Shen Z, Wai OWH, Li YS (2001) Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Mar Pollut Bull 42:215–223

    Article  CAS  Google Scholar 

  • Liu M, Chenbo J, Sun X, Hui Z, Fan D (2019) Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf. Environ Pollut 245:111–121

    Article  CAS  Google Scholar 

  • Mariet A-L, Sarret G, Bégeot C, Walter-Simonet A-V, Gimbert F (2017) Lead highly available in soils centuries after metallurgical ativities. J Environ Qual 46:1236–1242

    Article  CAS  Google Scholar 

  • Miller EK, Friedland AJ (1994) Lead migration in forest soils response to changing atmospheric inputs. Environ Sci Technol 28:662–669

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric tracemetals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Olson KW, Skogerboe RK (1975) Identification of soil lead compounds from automotive sources. Environ Sci Technol 9:227–230

    Article  CAS  Google Scholar 

  • Rosales-Hoz L, Carranza-Edwards A, Celis-Hernández O (2007) Environmental implications of heavy metals in surface sediments near Isla de Sacrificios, Mexico. Bull Environ Contam Toxicol 78:353–357

    Article  CAS  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, Páez-Osuna F, Ghaleb B, Caballero M (2007) Pb chronology and trace metal geochemistry at Los Tuxtlas, Mexico, as evidenced by a sedimentary record from the Lago Verde crater lake. Quat Res 67:181–192

    Article  Google Scholar 

  • Sauvé S, Martinez CE, McBride M, Hendershot W (2000) Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite, and leaf compost. Soil Sci Soc Am J 64:595–599

    Article  Google Scholar 

  • Schaaf P, Carrasco-Núñez G (2010) Geochemical and isotopic profile of Pico de Orizaba (Citlaltépetl) volcano, Mexico: Insights for magma generation processes. J Volcanol Geotherm Res 197:108–122

    Article  CAS  Google Scholar 

  • SGM (Servicio Geológico Mexicano) (2005) Carta Geológico- Minera del Estado de Veracruz, 1a edición: Escala 1:500000.

  • Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments: a case study: mahanadi basin, India. J Hazard Mater 186:1837–1846

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analyt Chem 51:844–851

    Article  CAS  Google Scholar 

  • Soto-Jiménez MF, Hibdon SA, Rankin CW, Aggarawl J, Ruiz-Fernández AC, Páez-Osuna F, Flegall AR (2006) Chronicling a century of lead pollution in Mexico: stable lead isotope composition analyses of dated sediment cores. Environ Sci Technol 40:764–770

    Article  Google Scholar 

  • Wang Y, Turnbull AB, Harrison RM (1997) Concentrations, phase partitioning and deposition of specific alkyl-lead compounds in the atmospher. Appl Organometal Chem 11:889–901

    Article  CAS  Google Scholar 

  • Weiss D, Shotyk W, Kempf O (1999) Archives of atmospheric lead pollution. Naturwissenschaften 86:262–275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to A. Soler-Aburto, A. Cidel-Huerta, J. Gutiérrez-Martínez and A. Morales-Aranda (UBIPRO, FESI, UNAM) for their assistance in the field and laboratory work. A graduate scholarship was granted to A. Córdova (CONACYT, Mexico). This study was funded by a grant to G. Horta-Puga (PAPIIT IN114616), and a postdoctoral fellowship to R.A. Cabral-Tena, both from DGAPA, UNAM, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Horta-Puga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, A., Cabral-Tena, R.A. & Horta-Puga, G. Environmental Geochemistry of Anthropogenic Lead in Estuarine Sediments of the Jamapa River, Mexico. Bull Environ Contam Toxicol 105, 764–769 (2020). https://doi.org/10.1007/s00128-020-03017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-03017-2

Keywords

Navigation