Skip to main content
Log in

Granite-related high-temperature hydrothermal uranium mineralisation: evidence from the alteration fingerprint associated with an early Yanshanian magmatic event in the Nanling belt, SE China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Baishuizhai, Shituling and Zhushanxia deposits from the Xiazhuang district represent to date the only known occurrences of early Yanshanian (Middle to Upper Jurassic) granite-related high-temperature hydrothermal uranium deposits (175–145 Ma) in the Nanling Metallogenic Belt, South China. Whole-rock geochemistry of ore samples combined with chemical and mineralogical signatures of the hydrothermal phases associated with the U mineralisation characterised a coeval potassic and propylitic alteration fingerprint: (i) the potassic alteration is defined by Na and Ca depletion of the granitic host rock and precipitation of adularia, dioctahedral Fe-muscovite, biotite and secondary quartz; and (ii) the propylitic alteration is marked by whole-rock enrichment in Ca, Fe, Mg, Mn and Ti mainly associated with the precipitation of (Mn)-epidote, Fe-chlorite, fluorapatite, titanite, calcite, APS and Fe-Cu-Pb-Cd-Bi-Mo-sulfide minerals. The high-temperature conditions of the hydrothermal system was demonstrated by the typologies of alteration such as greisen, chlorite geothermometry giving temperature estimates of the ore fluid ranging from 316 to 455°C, minor W mineralisation and the high Zr contents in titanite. Besides, high Rb, Ba, Be, Y, Nb, W, Ta and Mo contents in ore samples, mineral assemblages and chemical signatures of the hydrothermal phases showed evidence for the alteration of fractionated felsic granitic host rocks and the contribution of enriched magmatic-derived fluids. Therefore, these characteristics define a magmatic-hydrothermal genetic model directly related to the intrusion of early Yanshanian granites in the Nanling belt. In this new metallogenic model, highly fractionated high-K calc-alkaline A2-type granitic plutons have provided magmatic fluids, heat and metal sources to the early Yanshanian high-temperature hydrothermal U system. Uranium (±W-Sn-Nb-Ta-Li)-rich fluids were derived from fractionated peraluminous residual silicate melts. Uranium was enriched in a high-temperature, highly saline, F-rich, acid and reducing fluid, and dominantly carried as fluoride complexes. This mineralising fluid percolated in the Indosinian U-rich host granites within the cupolas of early Yanshanian granites and produced characteristic propylitic and potassic (including greisen) hydrothermal alteration. During the hydrothermal alteration, the pH and T variations of the mineralising fluid and the subsequent precipitation of F- and P-bearing hydrothermal phases induced the destabilisation of U complexes, winch eventually triggered the deposition of the U mineralisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Absar A (1991) Hydrothermal epidote - An indicator of temperature and fluid composition. J Geol Soc India 38-6:623–628

    Google Scholar 

  • Afshooni SZ, Mirnejad H, Esmaeily D, Asadi Haroni H (2013) Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geol Rev 54:214–232

    Article  Google Scholar 

  • Akasaka M, Watanabe J, Togari K, Kawamura M (1993) Mineralogy of piemontite-bearing schist in the Yamagami metamorphic rocks of northeastern Abukuma Plateau. J Mineral Petrol Econ Geol 88:141–156

    Article  Google Scholar 

  • Alexandre P, Kyser K, Layton-Matthews D, Joy B (2016) Chemical compositions of natural uraninite. Can Mineral 53-4:595–622

    Google Scholar 

  • Anderson CA, Hasler MF (1966) Extension of electron microprobe techniquees to biochemistry by the use of long wavelength X-rays. In: Castaing R, Deschamps P, Philibert J (eds) Proceedings of the Fourth International Conference on X‑ray Optics and Microanalysis. Hermann, Paris, pp 310–327

    Google Scholar 

  • Ballouard C, Boulvais P, Poujol M, Gapais D, Yamato P, Tartèse R, Cuney M (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220-223:1–22

    Article  Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J-L (2016) Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology 44:231–234

    Article  Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Mercadier J, Tartèse R, Venneman T, Deloule E, Jolivet M, Kéré I, Cathelineau M, Cuney M (2017) Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: the uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol Rev 80:309–331

    Article  Google Scholar 

  • Ballouard C, Poujol M, Mercadier J, Deloule E, Boulvais P, Baele J-M, Cuney M, Cathelineau M (2018) Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long term oxidized hydrothermal alteration during strike-slip deformation. Miner Dep 53:601–628

    Article  Google Scholar 

  • Beaufort D, Patrier P, Meunier A, Ottaviani MM (1992) Chemical variations in assemblages including epidote and/or chlorite in the fossil hydrothermal system of Saint Martin (Lesser Antilles). J Volcanol Geotherm Res 51:95–114

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SZ, Fisher NI (2002) Apatite as an indicator mineral for exploration: trace element comopositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Bhargava SK, Ram R, Pownceby M, Grocott S, Ring B, Tardio J, Jones L (2015) A review of acid leaching of uraninite. Hydrometallurgy 151:10–24

    Article  Google Scholar 

  • Bird DK, Spieler AR (2004) Epidote in geothermal systems. Rev Mineral Geochem 56:235–300

    Article  Google Scholar 

  • Bonnetti C, Cuney M, Bourlange S, Deloule E, Poujol M, Liu X, Peng Y, Yang J (2017) Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous roks of the Erlian Basin. Miner Dep 52:297–315

    Article  Google Scholar 

  • Bonnetti C, Liu X, Mercadier J, Cuney M, Deloule E, Villeneuve J, Liu W (2018a) The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation. Ore Geol Rev 92:588–612

    Article  Google Scholar 

  • Bonnetti C, Liu X, Mercadier J, Cuney M, Riegler T, Yu C (2020) Evolution of the uranium mineralisation in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China. Ore Geol Rev 122:103514

    Article  Google Scholar 

  • Bonnetti C, Liu X, Mercadier J, Cuney M, Wu B, Li G (2021) Genesis of the volcanic-related Be-U-Mo Baiyanghe deposit, West Junggar (NW China), constrained by mineralogical, trace element and U-Pb isotope signatures of the primary U mineralisation. Ore Geol Rev 128:103921

    Article  Google Scholar 

  • Bonnetti C, Riegler T, Liu X (2018b) Alteration fingerprint of the early Yanshanian granite-related high-temperature hydrothermal uranium mineralisation in the Nanling Metallogenic Belt, SE China. In: International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018). CN-261-83, IAEA, Vienna, pp 45–48

  • Bourdelle F, Cathelineau M (2015) Low-temperature chlorite geothermometry: a graphical representation based on a T–R2+–Si diagram. Eur J Mineral 27-5:617–626

    Article  Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6:229–250

    Article  Google Scholar 

  • Cao MJ, Qin KZ, Li G, Evans N, Jin L (2015) In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geol Rev 65:940–954

    Article  Google Scholar 

  • Carter A, Clift PD (2008) Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event? C R Geosci 340:83–93

    Article  Google Scholar 

  • Cathelineau M (1983) Potassic alteration in French hydrothermal uranium deposits. Miner Dep 18:89–97

    Article  Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  • Cathelineau M, Boiron MC, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Time-space relationships between U, Au and Sn-W ore deposition and geodynamic events - mineralogical and U-Pb data. Tectonophysics 177:59–79

    Article  Google Scholar 

  • Cerny P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100:337–370

    Google Scholar 

  • Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, Zhu R (2013) Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Res 24:412–428

    Article  Google Scholar 

  • Charvet J (2013) The Neoproterozoic-Early Paleozoic tectonic evolution of the South China block: an overview. J Asian Earth Sci 74:198–209

    Article  Google Scholar 

  • Chen PR (2004) Geodynamic setting of Mesozoic magmatism and its relationship to uranium metallogenesis in southeastern China. Uranium Geol 20:266–270 (in Chinese with English abstract)

    Google Scholar 

  • Chen YW, Bi XW, Hu RZ, Dong SH (2012) Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong province, China. Implications for U mineralization. Lithos 150:119–134

    Article  Google Scholar 

  • Chen PR, Hua R, Zhang B, Lu J, Fan C (2002) Early Yanshanian post-orogenic granitoids in the Nanling region. Sci China Ser D Earth Sci 45-8:755–768

    Google Scholar 

  • Chen CH, Lee CY, Shinjo RC (2008) Was there Jurassic paleo-Pacific subduction in South China?: constraints from 40Ar-39Ar dating, elemental and Sr-Nd-Pb isotope geochemistry of the Mesozoic basalts. Lithos 106:83–92

    Article  Google Scholar 

  • Che XD, Linnen RL, Wang RC, Groat LA, Brand AA (2013) Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. Can Mineral 51:415–438

    Article  Google Scholar 

  • Codeço M, Weis P, Trumbull RB, Hinsberg VV, Pinto F, Lecumberri-Sanchez P, Schleicher AM (2021) The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W–Sn–Cu deposit, Portugal. Miner Dep 56:481–508

    Article  Google Scholar 

  • Cuney M (2014) Felsic magmatism and uranium deposits. Bull Soc Géol France 185:75–92

    Article  Google Scholar 

  • Cuney M, Alexandrov P, Carlier L, de Veslud C, Cheilletz A, Raimbault L, Ruffet G, Scaillet S (2002) The timing of W-Sn-rare metals deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol Soc Lond Spec Publ 204:213–228

    Article  Google Scholar 

  • Cuney M, Friedrich M (1987) Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. Bull Mineral 110:235–247

    Google Scholar 

  • Cuney M, Friedrich M, Blumenfeld P, Bourgignon A, Boiron MC, Vigneresse JL, Poty B (1990) Metallogenesis in the French part of the Variscan orogeny. Part I: U-preconcentrations in the pre-Variscan and Variscan formations – a comparison with Sn, W, and Au. Tectonophysics 177:39–57

    Article  Google Scholar 

  • Cuney M, Kyser K (2008) Recent and not-so-recent developments in uranium deposits and implications for exploration. Min Assoc Can 39:257

    Google Scholar 

  • Dahlkamp FJ (2009) Uranium Deposits of the World: Asia. Springer Ed, Berlin, pp 31–156

    Book  Google Scholar 

  • Dahlkamp FJ (2016) Uranium deposits of the World: Europe. Springer Ed, Berlin, pp 57–146, 165–334

  • De Paolo DJ (1988) Neodymium Isotope Geochemistry: an introduction. Springer, New York

    Google Scholar 

  • Deng P, Ling H, Shen W, Gao J, Tan Z, Zhu B, Huang G (2005) A discussion on alkali metasomatism in Shituling uranium deposit, northern Guangdong Province. Geol Rev 51-5:557–565

    Google Scholar 

  • Deng P, Shen WZ, Ling HF (2003) Uranium mineralization related to mantle fluid: a case of study of the Xianshi deposit in the Xiazhuang uranium ore field. Geochim 32:520–528 (in Chinese with English abstract)

    Google Scholar 

  • Deng P, Shu LS, Tan ZZ et al (2002) Mesozoic tectonomagmatic activity and uranium metallogenetic sequence in Mid-Nanling Tectonic Belt. Uranium Geol 18-5:257–263

    Google Scholar 

  • Deng P, Ren JS, Ling HF, Shen WZ, Sun LQ, Zhu G, Tan ZZ (2012) Yanshanian granite batholiths of southern Zhuguangshan mountain: SHRIMP zircon U–Pb dating and tectonic implications. Geol Rev 57-6:881–888 (in Chinese with English abstract)

    Google Scholar 

  • Dill H (2003) A comparative study of APS minerals of the Pacific Rim fold belts with special reference to south American argillaceous deposits. J S Am Earth Sci 16:301–320

    Article  Google Scholar 

  • Du L, Wang W (2009) New exploration target for granite-type uranium deposits in South China – A case study on uranium mineralization of sericitic alteration. Uranium Geol 25-2:85–90

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A type granitoids: Petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Eglinger A, Andre-Mayer A-S, Vanderhaeghe O, Mercadier J, Cuney M, Decrée S, Feybesse J-L, Milesi J-P (2013) Geochemical signatures of uranium oxides in the Lufilian belt: From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geol Rev 54:197–213

    Article  Google Scholar 

  • Faure M, Sun Y, Shu L, Monie P, Charvet J (1996) Extensional tectonics within a subduction-type orogen. The case study of theWugongshan dome (Jiangxi Province, southeastern China). Tectonophysics 263:77–106

    Article  Google Scholar 

  • Faure M, Shu LS, Wang B, Charvet J, Choulet F, Monie P (2009) Intracontinental subduction: a possible mechanism for the Early Palaeozoic orogeny of SE China. Terra Nova 21:360–368

    Article  Google Scholar 

  • Feng C, Zeng Z, Zhang D, Qu W, Du A, Li D, She H (2011) SHRIMP zircon U–Pb and molybdenite Re–Os isotopic dating of the tungsten deposits in the Tianmenshan HongtaolingW–Sn orefield, southern Jiangxi Province, China, and geological implications. Ore Geol Rev 43:8–25

    Article  Google Scholar 

  • Förster HJ (1999) The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineral Soc 63-2:239–239

    Google Scholar 

  • Friedrich MH, Cuney M, Poty B (1987) Uranium geochemistry in peraluminous leucogranites, in: Concentration mechanisms of uranium in geological environments – a conference report. Uranium 3:353–385

    Google Scholar 

  • Friel JJ, Lyman CE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12:2–25

    Article  Google Scholar 

  • Frimmel HE, Schedel S, Brätz H (2014) Uraninite chemistry as forensic tool for provenance analysis. Appl Geochem 48:104–121

    Article  Google Scholar 

  • Gaboreau S, Beaufort D, Vieillard P, Patrier P (2005) Alluminum phosphate-sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. Can Mineral 43:813–827

    Article  Google Scholar 

  • Gan C, Wang Y, Zhang Y, Zhang J (2017) The earliest Jurassic A-type granite in the Nanling Range of southeastern South China: petrogenesis and geological implications. Int Geol Rev 59-3:274–292

    Article  Google Scholar 

  • Gao P, Zhao ZF, Zheng YF (2014) Petrogenesis of Triassic granites from the Nanling Range in South China: implications for geochemical diversity in granites. Lithos 210-211:40–46

    Article  Google Scholar 

  • Halter WE, Williams-Jones AE, Kontak DJ (1998) Modeling fluid–rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization. Chem Geol 150(1-2):1–17

    Article  Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A-S, Baumgartner L, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L (2021) Fluid mixing as primary trigger for cassiterite deposition: evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth Planet Sci Lett 563:116889

    Article  Google Scholar 

  • Harlaux M, Mercadier J, Bonzi WM-E, Kremer V, Marignac C, Cuney M (2017) Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): insights from LA-ICPMS analysis of primary fluid inclusions. Geofluids 2017:1–25

    Article  Google Scholar 

  • Harlaux M, Romer R, Mercadier J, Morlot C, Marignac C, Cuney M (2018) 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Miner Dep 53:21–51

    Article  Google Scholar 

  • Harlov DE (2015) Apatite: A fingerprint for metasomatic processes. Elements 11:171–176

    Article  Google Scholar 

  • Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2004) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Trans R Soc Edinb Earth Sci 95:339–356

    Article  Google Scholar 

  • Hazen RM, Ewing RC, Sverjensky D (2009) Evolution of uranium and thorium minerals. Am Mineral 94:1293–1311

    Article  Google Scholar 

  • Hikov A (2019) First find of florencite-(Ce,La,Nd) in advanced argillic altered rocks from the Asarel porphyry copper deposit, Central Srednogorie. Rev Bulgarian Geol Soc 80:33–35

    Google Scholar 

  • Hu BQ, Bai LH, Pan TY, Xu DZ (2003) The early high-temperature uranium mineralization in Zhushanxia deposit. J East China Geol Inst 26:311–320 (in Chinese with English Abstract)

    Google Scholar 

  • Hu RZ, Bi XW, Zhou MF, Peng J, Su WC, Liu S, Qi H (2008) Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Econ Geol 103:583–598

    Article  Google Scholar 

  • Hua RM, Chen PR, Zhang WL, Lu JJ (2005) Three major metallogenic events in Mesozoic in South China. Mineral Deposits 24-2:99–107 (in Chinese with English abstract)

    Google Scholar 

  • Huang GL, Yin ZP, Ling HF, Deng P, Zhu B, Shen WZ (2010) Formation age, geochemical characteristics and genesis of pitchblende from No. 302 uranium deposit in northern Guangdong. Mineral Deposits 29-2:352–400 (in Chinese with English Abstract)

    Google Scholar 

  • Keppler H, Wyllie PJ (1990) Role of fluids in transport and fractionation of uranium and thorium in magmatic provinces. Nature 348:531–533

    Article  Google Scholar 

  • Ketcham AR (2015) Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am Mineral 100-7:1620–1623

    Article  Google Scholar 

  • Kribec B, Zak K, Dobes P, Leichmann J, Pudilova M, Rene M, Scharm B, Scharmova M, Hajek A, Holeczy D, Hein UF, Lehmann B (2009) The Rozna uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Deposita 44:99–128

    Article  Google Scholar 

  • Legros H, Harlaux M, Mercadier J, Romer RL, Poujol M, Camacho A, Marignac C, Cuney M, Wang RC, Charles N, Lespinasse M (2020) The world-class Nanling metallogenic belt (Jiangxi, China): W and Sn deposition at 160 Ma followed by 30 m.y. of hydrothermal metal redistribution. Ore Geol Rev:117:103302

  • Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang RC, Charles N, Lespinasse M-Y (2016) Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos 264:108–124

    Article  Google Scholar 

  • Legros H, Marignac C, Tabary T, Mercadier J, Richard A, Cuney M, Wang RC, Charles N, Lespinasse M-Y (2018) The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. Am Mineral 103:39–54

    Article  Google Scholar 

  • Legros H, Richard A, Tarantola A, Kouzmanov K, Mercadier J, Vennemann T, Marignac C, Cuney M, Wang RC, Charles N, Bailly L, Lespinasse M-Y (2019) Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China). Chem Geol 508:92–115

    Article  Google Scholar 

  • Lehmann B (2021) Formation of tin ore deposits: a reassessment. Lithos 402-403:105756

    Article  Google Scholar 

  • Leroy J (1984) Episyénisation dans le gisement d’uranium du bernardan (Marche): Comparaison avec des gisements similaires du Nord-Ouest du Massif Central français. Miner Dep 19-1:26–35

    Google Scholar 

  • Li XH (2000) Cretaceous magmatism and lithospheric extension in Southeast China. J Asian Earth Sci 18:293–305

    Article  Google Scholar 

  • Li ZX, Li XH (2007) Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35:179–182

    Article  Google Scholar 

  • Li XH, Hu RZ, Rao B (1997) Geochronology and geochemistry of Cretaceous mafic dikes from Northern Guangdong, SE China. Geochimi 26:14–31 (in Chinese with English abstract)

    Google Scholar 

  • Li J, Huang XL, Fu Q, Li W (2021a) Tungsten mineralization during the evolution of a magmatic-hydrothermal system: mineralogical evidence from the Xihuashan rare-metal granite in South China. Am Mineral 106:443–460

    Article  Google Scholar 

  • Li J, Huang XL, He PL, Li WX, Yu Y, Chen LL (2015) In situ analysis of micas in the Yanshan granite, south China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb-bearing granites. Ore Geol Rev 65:793–810

    Article  Google Scholar 

  • Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei G, Qi C (2007) U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos 96:186–204

    Article  Google Scholar 

  • Li X, McCulloch M (1998) Geochemical characteristics of Cretaceous mafic dikes from northern Guangdong, SE China: age, origin and tectonic significance. In: MFJ F, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia, vol 27. AGU, Geodynamics, Washington D.C., pp 405–419

    Chapter  Google Scholar 

  • Li C, Wang Z, Lü Q, Tan Y, Li L, Tao T (2021b) Mesozoic tectonic evolution of the eastern South China Block: a review on the synthesis of the regional deformation and magmatism. Ore Geol Rev 131:104028

    Article  Google Scholar 

  • Li JH, Zhang YQ, Dong SW, Johnston ST (2014) Cretaceous tectonic evolution of South China: a preliminary synthesis. Earth Sci Rev 134:98–136

    Article  Google Scholar 

  • Li HW, Zhao Z, Chen ZY, Guo NX, Gan JW, Li XW, Yin Z (2021c) Genetic relationship between the two-period magmatism and W mineralisation in the Dahutang ore field, Jiangxi Province: Evidence from zircon geochemistry. Acta Petrol Sin 37:1508–1530

    Article  Google Scholar 

  • Liégeois JP, Abdelsalam MG, Ennih N, Ouabadi A (2013) Metacraton: nature, genesis and behavior. Gondwana Res 23:220–237

    Article  Google Scholar 

  • Ling HF, Shen WZ, Deng P, Jiang SY, Jiang YH, Qiu JS, Huang GL, Ye HM, Tan ZZ (2004) Age, geochemistry and petrogenesis of the Sundong granite, northern Guangdong province. Acta Petrol Sin 20:413–424 (in Chinese with English abstract)

    Google Scholar 

  • Ling HF, Shen WZ, Deng P, Jiang SY, Jiang YH, Qiu JS, Huang GL, Ye HM, Tan ZZ (2005) Study of geochemistry and petrogenesis of the Maofeng granite, northern Guangdong province. Acta Petrol Sin 21:677–687 (in Chinese with English abstract)

    Google Scholar 

  • Liu Q, Yu JH, Wang Q, Su B, Zhou MF, Xu H, Cui X (2012) Ages and geochemistry of granites in the Pingtan-Dongshan metamorphic belt, coastal South China: new constraints on Late Mesozoic magmatic evolution. Lithos 150:268–286

    Article  Google Scholar 

  • Liu X, Wu J, Pan J, Zhu M (2014) Granite-related hydrothermal uranium mineralization in South China. In: International symposium on uranium raw material for the nuclear fuel cycle: exploration, mining, production, supply and demand, economics and environmental issues. CN-216-127, IAEA, Vienna, p 17

  • Liu H, Wang Y, Cawood PA, Fan W, Cai Y, Xing X (2015) Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Res 27-3:1292–1306

    Article  Google Scholar 

  • Luo JC, Hu RZ, Fayek M, Li CS, Bi XW, Abdu Y, Chen YW (2015) In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geol Rev 65:968–978

    Article  Google Scholar 

  • Mao JW, Pirajno F, Cook N (2011) Mesozoic metallogeny in East China and corresponding geodynamic settings - an introduction to the special issue. Ore Geol Rev 43:1–7

    Article  Google Scholar 

  • Mao JW, Cheng Y, Chen M, Pirajno F (2013a) Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Dep 48:267–294

    Article  Google Scholar 

  • Mao JW, Ye H, Liu K, Li Z, Takahashi Y, Zhao X, Kee WS (2013b) The Indosinian collision–extension event between the South China Block and the Palaeo-Pacific plate: Evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China. Lithos 172-173:81–97

    Article  Google Scholar 

  • Marignac C, Cuney M (1999) Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Miner Dep 34:472–504

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • Mercadier J, Cuney M, Lach P, Boiron M-C, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23:264–269

    Article  Google Scholar 

  • Monier G, Robert JL (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600 °C, 2 kbar PH2O: comparison with natural lithium micas. Mineral Mag 50:641–651

    Article  Google Scholar 

  • Monnier L, Salvi S, Jourdan V, Sall S, Bailly L, Melleton J, Beziat D (2020) Contrasting fluid behavior during two styles of greisen alteration leading to distinct wolframite mineralizations: The Échassières district (Massif Central, France). Ore Geol Rev 124:103648

    Article  Google Scholar 

  • Nakada R, Shibuya T, Suzuki K, Takahashi Y (2017) Europium anomaly variation under low-temperature water-rock interaction : A new thermometer. Geochem Int 55:822–832

    Article  Google Scholar 

  • O’Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D (2020) The trace element composition of apatite and its application to detrital provenance studies. Earth Sci Rev 201:103044

    Article  Google Scholar 

  • OECD-NEA/IAEA (2016) Uranium 2016: Resources, Production and Demand. OECD Ed, Paris

    Google Scholar 

  • Pacey A, Wilkinson JJ, Boyce AJ, Millar IL (2020) Magmatic fluids implicated in the formation of propylitic alteration: oxygen, hydrogen, and strontium isotope constraints from the Northparkes porphyry Cu-Au district, New South Wales, Australia. Econ Geol 115:729–748

    Article  Google Scholar 

  • Parsapoor A, Khalili M, Mackizadeh MA (2009) The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). J Asian Earth Sci 34:123–134

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Article  Google Scholar 

  • Patrier P, Beaufort D, Touchard G, Fouillac A-M (1990) Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields? Geology 18:1126–1129

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Cheney SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21:115–144

    Article  Google Scholar 

  • Peiffert C, Cuney M, Nguyen Trung C (1994) Uranium in granitic magmas. Part I: experimental determination of uranium solubility and fluid-melt partition coefficients in the UO2-haplogranite-H2O Na2CO3 system at 720–770°C, 200 MPa. Geochim Cosmochim Acta 58:2495–2507

    Article  Google Scholar 

  • Peiffert C, Nguyen Trung C, Cuney M (1996) Uranium in granitic magmas. Part II: experimental determination of uranium solubility and fluid-melt partition coefficients in the UO2-haplogranite-H2O-halides system at 720–770°C, 200 MPa. Geochim Cosmochim Acta 60:1515–1529

    Article  Google Scholar 

  • Peucat JJ, Jegouzo P, Vidal P, Bernard-Griffiths J (1988) Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth Planet Sci Lett 88:60–68

    Article  Google Scholar 

  • Pirajno F (2013) Yangtze Craton, Cathaysia and the South China Block. In: Pirajno F (ed) The Geology and Tectonic Settings of China’s Mineral Deposits. Springer Ed, New York, pp 127–247

    Chapter  Google Scholar 

  • Riegler T, Quirt D, Beaufort D (2016) Spatial distribution and compositional variation of APS minerals related to uranium deposits in the Kiggavik-Andrew Lake structural trend, Nunavut, Canada. Miner Dep 51:219–236

    Article  Google Scholar 

  • Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95

    Article  Google Scholar 

  • Shi R, Zhao J, Evans NJ, Qin K, Wang F, Li Z, Han R, Li X (2021) Temporal-spatial variations in Li-Fe mica compositions from the Weilasituo Sn-polymetallic deposit (NE China): implications for deposit-scale fluid evolution. Ore Geol Rev 134:104132

    Article  Google Scholar 

  • Shu LS, Faure M, Wang B, Zhou XM, Song B (2008) Late Palaeozoic–Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia. C R Geosci 340:151–165

    Article  Google Scholar 

  • Shu LS, Zhou XM, Deng P, Wang B, Jiang SY, Yu JH, Zhao XX (2009) Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. J Asian Earth Sci 34:376–391

    Article  Google Scholar 

  • Sizaret S, Marcoux E, Jébrak M, Touray JC (2004) The Rossignol fluorite vein, Chaillac, France: multiphase hydrothermal activity and intravein sedimentation. Econ Geol 99:1107–1122

    Article  Google Scholar 

  • Stoffregen RE, Alpers CN (1987) Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. Can Mineral 25:201–211

    Google Scholar 

  • Sun Y, Fan H, Li X, He D, Guo H (2017) Exploration and exploitation comparison on Zhushanxia deposit at Xiazhuang uranium ore filed. Uranium Geol 33:49–54 (in Chinese with English abstract)

    Google Scholar 

  • Tao J, Li W, Li X, Cen T (2013) Petrogenesis of early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: evidence from zircon U-Pb dating, Hf-O isotope and whole-rock geochemistry. Sci China Earth Sci 56-6:922–939

    Article  Google Scholar 

  • Tartèse R, Boulvais P, Poujol M, Glouagen E, Cuney M (2012) Uranium mobilization from the Variscan Questembert syntectonic granite during hydrothermal alateration fluid-rock interactions at depth. Econ Geol 108:379–386

    Article  Google Scholar 

  • Tischendorf G, Gottesmann B, Förster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral Mag 61:809–834

    Article  Google Scholar 

  • Van Acker T, Van Malderen SJM, Van Eerden M, Mc Duffie JE, Cuyckens F, Vanhaecke F (2016) High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects. Anal Chim Acta 945:23–30

    Article  Google Scholar 

  • Velde B (1985) Clay minerals: a physic-chemical explanation of their occurrence. Elsevier, Amsterdam, p 427

    Google Scholar 

  • Wang J, Li ZX (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res 122:141–158

    Article  Google Scholar 

  • Wang D, Shu L (2012) Late Mesozoic basin and range tectonics and related magmatism in Southeastern China. Geosci Front 3-2:109–124

    Article  Google Scholar 

  • Wang C, Wu L (2012) Potential analysis of uranium prospecting in Baishuizhai, northern Guangdong Province. J East China Inst Technol 35-1:17–22

    Google Scholar 

  • Wang YJ, Fan WM, Zhang GW, Zhang YH (2013) Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Res 23:1273–1305

    Article  Google Scholar 

  • Wang L-X, Ma C-Q, Lai Z-X, Marks M, Zhang C, Zhong Y-F (2015) Early Jurassic mafic dykes from the Xiazhuang ore district (South China): implications for tectonic evolution and uranium metallogenesis. Lithos 239:71–85

    Article  Google Scholar 

  • Wang X, Qiu Y, Chou IM, Zhang R, Li G, Zhong R (2020) Effects of pH and salinity on the hydrothermal transport of tungsten: Insights fromm in situ raman spectroscopic characterization of K2WO4-NaCl-HCL-CO2 solution at temperatures up to 400°C. Geofluids 2020-2978984:1–12

  • Wilkinson JJ, Chang Z, Cooke DR, Baker MJ, Wilkinson CC, Inglis S, Chen H, Gemmell JB (2015) The chlorite proximitor: a new tool for detecting porphyry ore deposits. J Geochem Explor 152:10–26

    Article  Google Scholar 

  • Wilkinson J, Cooke DR, Baker MJ, Chang Z, Wilkinson CC, Chen H, Fox N, Hollings P, White NC, Gemmel JB, Loader MA, Pacey A, Sievright RH, Hart LA, Brugge ER (2017) Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools. In: MB MC, Layton-Matthews D (eds) Application of Indicator Mineral Methods to Bedrock Sediments. Geological Suvey of Canada, Open File 8345, Ottawa

    Google Scholar 

  • Wilkinson J, Baker MJ, Cooke DR, Wilkinson CC (2020) Exploration targeting in porphyry Cu systems using propylitic mineral chemistry: a case study of the El Teniente deposit, Chile. Econ Geol 115:771–791

    Article  Google Scholar 

  • Wu LQ, Tan ZZ, Liu RZ, Huang GL (2003) Discussion on uranium ore-formation age in Xiazhuang ore-field, northern Guangdong. Uranium Geol 19-1:28–33

    Google Scholar 

  • Wu D, Pan J, Xia F, Huang G, Lai J (2019) The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the Middle Nanling Range, SE China. Minerals 9:199

    Article  Google Scholar 

  • Xia Y, Xu XS, Zou HB, Liu L (2014) Early Paleozoic crust–mantle interaction and lithosphere delamination in South China Block: evidence fromgeochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos 184-187:416–435

    Article  Google Scholar 

  • Xu XS, Deng P, Reilly SYO, Griffin WL, Zhou XM, Tan ZZ (2003) Single zircon LA-ICPMS U–Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chin Sci Bull 48:1892–1899

    Article  Google Scholar 

  • Xu Y, Wang CY, Zhao T (2016) Using detrital zircons from rivers sands to constrain major tectono-thermal events of the Cathaysia Block, SE China. J Asian Earth Sci 124:1–13

    Article  Google Scholar 

  • Yang J, Liu Y, Zhong FJ, Shen T (2015) Characteristics of alkaline metasomatic rocks in Zhushanxia uranium deposit and its relationship with uranium mineralization. Mineral Res Geol 29:208–214 (in Chinese with English abstract)

    Google Scholar 

  • Yavuz F, Yildirim DK (2018) A windows program for calculation and classification of epidote-supergroup minerals. Periodico Mineral 87:269–285

    Google Scholar 

  • Ye HM, Mao JR, Zhao XL, Liu K, Chen DD (2013) Revisiting Early-Middle Jurassic igneous activity in the Nanling Mountains, South China: geochemistry and implications for regional geodynamics. J Asian Earth Sci 31:108–117

    Article  Google Scholar 

  • Zang Z, Dong L, Liu W, Zhao H, Wang X, Cai K, Wan B (2019) Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system. Sci Rep 9:10382

    Article  Google Scholar 

  • Zeng ZL, Zhu XP, Xu JX (2007) Tungsten reserves of southern Jiangxi Province and prospecting outlook. China Tungsten Ind 6:16–24 (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZS (2011) Xiazhuang uranium ore field: role of ore-forming fluids and uranium metallogenesis. China Atom Ener Press, Beijing (in Chinese with English abstract)

  • Zhang C, Cai Y, Xu H, Liu J, Hao R (2017) Mechanism of mineralization in the Changjiang uranium ore field, South China: evidence from fluid inclusions, hydrothermal alteration, and H–O isotopes. Ore Geol Rev 86:225–253

    Article  Google Scholar 

  • Zhang L, Chen Z, Wang F, White NC, Zhou T (2021) Release of uranium from uraninite in granites through alteration: implications for the source of granite-related uranium ores. Econ Geol 116:1053–1072

    Article  Google Scholar 

  • Zhao KD, Jiang SY, Chen WF, Chen PR, Ling HF (2013) Zircon U–Pb chronology and elemental and Sr–Nd–Hf isotope geochemistry of two Triassic A-type granites in South China: implication for petrogenesis and Indosinian transtensional tectonism. Lithos 160-161:292–306

    Article  Google Scholar 

  • Zhao JL, Qiu JS, Liu L, Wang RQ (2016) The Late Cretaceous I- and A-type granite association of southeast China: implications for the origin and evolution of post-collisional extensional magmatism. Lithos 240-243:16–33

    Article  Google Scholar 

  • Zhong F, Pan J, Qi J, Yan J, Liu W, Li H (2018) New in-situ LA-ICP-MS U-Pb ages of uraninite from the Mianhuakeng uranium deposit, northern Guangdong Province, China: Constraint on the metallogenic mechanism. Acta Petrol Sin 92:852–854

    Google Scholar 

  • Zhou T, Goldfarb RJ, Philips GN (2002) Tectonics and distribution of gold deposits in China – an overview. Mineral Deposita 37:249–282

    Article  Google Scholar 

  • Zhou X, Sun T, Shen W, Shu L, Niu Y (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 29-1:26–33

    Article  Google Scholar 

  • Zhou L, McKenna CA, Long DGF, Kamber BS (2017) LA-ICP-MS elemental mapping of pyrite: An Application to the Palaeoproterozoic atmosphere. Precambrian Res 29:33–55

    Article  Google Scholar 

  • Zhu BQ, Ling H, Shen W, Gao J, Deng P, Huang G, Tan Z (2006) Isotopic geochemistry of Shituling uranium deposit, northern Guangdong Province, China. Mineral Deposits 25-1:71–82 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the colleagues from the Research Institute No. 290, BOG, CNNC in Shaoguan, Guangdong, for their field support and access to the mine sites. The authors also acknowledge the collaboration of Dr Guolin Guo for the acquisition of EPMA data, Dr Xuefen Zhang for the petrographic observations performed by SEM, and Dr Kaixing Wang for providing the authors with insightful literature. The authors are grateful to Cora McKenna, Dr Gary O’Sullivan and Dr Chris Mark for their assistance during LA-ICP-MS analytical sessions. Finally, the authors would like to thank editor in-chief Bernd Lehmann, associate editor Mostafa Fayek and one anonymous reviewer for improving this paper.

Funding

Financial support for this study was provided by the East China University of Technology in Nanchang, the National Natural Science Foundation of China (Grant number: 41750110482) and by the Bureau of Geology of the Chinese National Nuclear Corporation (BOG, CNNC).

Author information

Authors and Affiliations

Authors

Contributions

- Dr. Christophe Bonnetti conducted the study and wrote the manuscript.

- Dr. Thomas Riegler contributed in the data acquisition and processing, and revised the manuscript.

- Prof. Xiaodong Liu contributred in the scientific discussion and revised the manuscript.

- Dr. Michel Cuney contributred in the scientific discussion and revised the manuscript.

Corresponding authors

Correspondence to Christophe Bonnetti or Xiaodong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: M. Fayek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. A

Cross sections of the Shituling (1), Baishuizhai (2) and Zhushanxia (3) deposits showing the location of the studied samples (modified after Dahlkamp 2009; Du and Wang 2009; CNNC unpublished data). To be noted that it is unsure whether the intrusion characterised as “Early Yanshanian (early intrusion)” for Shituling and Baishuizhai deposits belong to the early Yanshanian or Indosinian stage. (PNG 585 kb)

High resolution image (EPS 15061 kb)

Fig. B

Backscattered electron photographs of the hydrothermal alteration minerals associated with the uranium mineralisation from Baishuizhai, Shituling and Zhushanxia deposits in Xiazhuang ore field. (1) Disseminated aggregates of sub-idiomorphic uraninite from the Baishuizhai deposit associated with secondary quartz and muscovite; (2) pitchblende spherulites and uraninite crystals from the Shituling deposit associated with hydrothermal garnet, quatrz, calcite and greenockite; (3) Fe-W oxide and quartz associated with a pitchblende vein from the Shituling deposit; (4) Aggregates of kaolinite crystals associated with pitchblende from the Shituling deposit; (5) hydrothermal titanite associated with chlorite, calcite and microcrystalline quartz; (6) intergrowth of hydrothermal muscovite and epidote; (7) polysulphide agreggate of chalcopyrite, galena, bismuthinite and greenockite associated with epidote and chlorite; (8) molybdenite crystal associated with epidote, chlorite and quartz. Bi = bismuthinite, Cal = calcite, Ccp = chalcopyrite, Chl = chlorite, Ep = epidote, Gk = greenockite, Gn = galena, Ill = illite, Kln = kaolinite, Ms = muscovite, Mol = molybdenite, Pit = pitchblende, Qtz = quartz, Ttn = titanite, Ur = uraninite. Circles in yellow colour indicate the location of EPMA datapoints and the green squares indicate the location of LA-ICP-MS spots. (PNG 8292 kb)

High resolution image (EPS 31757 kb)

Fig. C

SEM-EDS X-ray maps of a mineralised zone from the Baishuizhai deposit showing the chemical/mineralogical features of the hydrothermal alteration. (1) BSE image of the mapped area showing disseminated uraninite associated with muscovite, epidote, illite, calcite and quartz; (2) composite elemental map showing the spatial distribution of U, Mn, K and Si; (3–9) U, Si, Al, K, Ca, Fe and Mn elemental maps. Cal = calcite, Ep = epidote, Ill = illite, Ms = muscovite, Qtz = quartz. (PNG 3274 kb)

High resolution image (EPS 56500 kb)

Fig. D

SEM-EDS X-ray maps of the U mineralisation from the Shituling deposit showing the chemical/mineralogical features of the hydrothermal alteration. (1) composite elemental map showing the spatial distribution of U, Ca and Si of a mineralised area in sample STL-02; (2–6) U, Ca, Si, Al and Fe elemental maps of (1). Cal = calcite, Grt = garnet, Pit = pitchblende, Qtz = quartz. (PNG 5070 kb)

High resolution image (EPS 80459 kb)

ESM 1

(DOCX 306 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnetti, C., Riegler, T., Liu, X. et al. Granite-related high-temperature hydrothermal uranium mineralisation: evidence from the alteration fingerprint associated with an early Yanshanian magmatic event in the Nanling belt, SE China. Miner Deposita 58, 427–460 (2023). https://doi.org/10.1007/s00126-022-01137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01137-9

Keywords

Navigation