Skip to main content
Log in

Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide–Cu (–Ag–Au) deposits, south-central Perú

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adshead ND, Voulgaris P, Muscio VN (1998) Osborne copper–gold deposit. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua New Guinean mineral deposits. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 793–799

    Google Scholar 

  • Aguirre L (1988) Chemical mobility during low-grade metamorphism of a Jurassic lava flow: Río Grande Formation, Peru. J S Am Earth Sci 1:343–361

    Article  Google Scholar 

  • Alt JC (1999) Very low-grade hydrothermal metamorphism of basic igneous rocks. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell Science, Oxford, pp 169–201

    Google Scholar 

  • Atherton MP, Webb S (1989) Volcanic facies, structure, and geochemistry of the marginal basin rocks of central Peru. J S Am Earth Sci 2:241–261

    Article  Google Scholar 

  • Baker T (1998) Alteration, mineralization, and fluid evolution at the Eloise Cu–Au deposit, Cloncurry District, Northwest Queensland, Australia. Econ Geol 93:1213–1236

    Article  Google Scholar 

  • Baker T, Perkins C, Blake KL, Williams PJ (2001) Radiogenic and stable isotope constraints on the genesis of the Eloise Cu–Au deposit, Cloncurry district, NW Queensland. Econ Geol 96:723–742

    Article  Google Scholar 

  • Balcerzak M (2003) An overview of analytical applications of time of flight mass spectrometric (TOF-MS) analysers and an inductively coupled plasma-TOF-MS technique. Anal Sci 19:979–989

    Article  Google Scholar 

  • Baldassaro PM, Bodnar RJ (2000) Low temperature phase relations in the system H2O–NaCl–FeCl2: application to fluid inclusion studies. Geol Soc Am Abstr Program A-4(2):A-4

    Google Scholar 

  • Barton PB Jr, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 278–403

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (–Cu–Au) systems: implications for hydrothermal alteration and metals. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 43–60

    Google Scholar 

  • Barton MD, Johnson DA (2004) Footprints of Fe-oxide (–Cu–Au) systems. Univ W Aust Spec Publ 33:112–116

    Google Scholar 

  • Bastrakov EN, Skirrow RG, Davidson GJ (2007) Fluid evolution and origins of iron oxide Cu–Au prospects in the Olympic Dam district, Gawler Craton, South Australia. Econ Geol 102:1415–1440

    Article  Google Scholar 

  • Baxter R, Meder K, Cinits R, Berezowski M (2005) The Marcona copper project—Mina Justa prospect geology and mineralisation. Proceedings of the 3rd Congr Int de Prospectores y Exploradores, Lima, Conferencias, Inst de Ingenieros de Minas del Perú, Lima (CD-ROM)

  • Benavides J, Kyser TK, Clark AH, Oates C, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide–copper–gold district, III Región, Chile: the role of regionally-derived, non-magmatic fluid contributions to chalcopyrite mineralization. Econ Geol 102:415–440

    Article  Google Scholar 

  • Bodnar R (2003) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusion-analysis and interpretation. Miner Assoc Canada Short Course Series 32, pp 1–9

  • Boric R, Holmgren C, Wilson NSF, Zentilli M (2002) The geology of the El Soldado manto type Cu (Ag) deposit, central Chile. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold & related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 123–136

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Article  Google Scholar 

  • Bouzari F, Clark AH (2006) Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Región, northern Chile. Econ Geol 101:95–134

    Article  Google Scholar 

  • Bowers TS (1989) Stable isotope signatures of water–rock interaction in mid-ocean ridge hydrothermal systems: sulphur, oxygen, and hydrogen. J Geophys Res 94:5775–5786

    Article  Google Scholar 

  • Broman C, Nyström JO, Henríquez F, Elfman M (1999) Fluid inclusions in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile. Geologiska Föreningens i Stockholm Förhandlingar 121:253–267

    Google Scholar 

  • Caldas J (1978) Geología de los cuadrángulos de San Juan, Acarí y Yauca. Instituto Geológico Minero y Metalúrgico del Perú, Lima, Perú, Boletín 30

  • Chen HY, Clark AH, Kyser TK, Ullrich TD, Baxter R, Chen YM, Moody TC (2010a) Evolution of the giant Marcona–Mina Justa iron oxide–copper–gold district, south-central Peru. Econ Geol 105:155–185

    Article  Google Scholar 

  • Chen HY, Clark AH, and Kyser TK (2010b) The Marcona magnetite deposit, Ica, central-south Peru: a product of hydrous, iron oxide-rich melt? Econ Geol 105:1441–1456

    Google Scholar 

  • Clayton RN, Keiffer SW (1991) Oxygen isotopic thermometer calibrations. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society Special Publication 3, pp 3–10

  • Clayton R, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Article  Google Scholar 

  • Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Article  Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochim Cosmochim Acta 54:591–601

    Article  Google Scholar 

  • de Haller A, Zúñiga AJ, Corfu F, Fontboté L (2002) The iron oxide–Cu–Au deposit of Raúl-Condestable, Mala, Lima, Peru. Resúmen 11th Congr Geol Peruano, p 80

  • de Haller A, Corfu F, Fontboté L, Schaltegger U, Barra F, Chiaradia M, Frank M, Alvarado JZ (2006) Geology, geochronology, and Hf and Pb isotope data of the Raúl-Condestable iron oxide–copper–gold deposit, central coast of Peru. Econ Geol 101:281–310

    Article  Google Scholar 

  • Eastoe CJ (1978) A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ Geol 73:721–748

    Article  Google Scholar 

  • Ettner DC, Bjolykke A, Andersen T (1994) A fluid inclusion and stable isotope study of the Proterozoic Bidjovagge Au–Cu deposit, Finnmark, northern Norway. Miner Depos 29:16–29

    Google Scholar 

  • Fisher LA, Kendrick MA (2008) Metamorphic fluid origins in the Osborne Fe oxide– Cu–Au deposit, Australia: evidence from noble gases and halogens. Miner Depos 43:483–497

    Article  Google Scholar 

  • Fu B, Williams PJ, Oliver NHS, Dong G, Pollard PJ, Mark G (2003) Fluid mixing versus unmixing as an ore-forming process in the Cloncurry Fe-oxide–Cu–Au district, NW Queensland, Australia: evidence from fluid inclusions. J Geochem Explor 78(79):617–622

    Article  Google Scholar 

  • Gillen D, Baker T, Hunt J, Ryan C, Win TT (2004) PIXE analysis of hydrothermal fluids in the Wernecke Mountains, Canada. Predictive Mineral Discovery CRC Conference, Barossa Valley, Australia, pp 69–73

  • Goldstein RH (2003) Petrographic analysis of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusion-analysis and interpretation. Mineralogical Association of Canada Short Course Series 32, pp 9–54

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Soc Sedim Geol Short Course 31:199

    Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper–gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    Article  Google Scholar 

  • Hawkes N, Clark AH, Moody TC (2002) Marcona and Pampa de Pongo: giant Mesozoic Fe–(Cu, Au) deposits in the Peruvian coastal belt. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold & related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 115–130

    Google Scholar 

  • Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore deposit: a fluid-mixing model. Econ Geol 90:281–307

    Article  Google Scholar 

  • Hedenquist JW, Arribas AJ, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Hinton RW (1999) NIST SRM 610, 611 and SRM 612, 613 multi-element glasses: constraints from element abundance ratios measured by microprobe techniques. Geostand Newsl 23(2):197–207

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Berlin, p 214

    Google Scholar 

  • Hunt J, Baker T, Thorkelson D (2005) Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada. Miner Depos 40:492–514

    Article  Google Scholar 

  • Hunt J, Baker T, Thorkelson D (2007) A review of iron oxide copper–gold deposits, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification. Explor Min Geol 16:209–232

    Article  Google Scholar 

  • Javoy M, Pineau F, Cheminee JL, Kraft M (1988) The gas–magma relationship in the 1988 eruption of Oldoinyo Lengai (Tanzania). Am Geophy Union EOS Trans 69:1466

    Google Scholar 

  • Kajiwra Y, Krouse HR (1971) Sulfur isotope partitioning in metallic sulfide systems. J Can Earth Sci 8:1397–1408

    Article  Google Scholar 

  • Kendrick MA, Mark G, Phillips D (2007) Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: evidence from Ar, Kr, Xe, Cl, Br and I. Earth Planet Sci Lett 256:328–343

    Article  Google Scholar 

  • Kojima S, Astudillo J, Rojo J, Tristá D, Hayashi K (2003) Ore mineralogy, fluid inclusion, and stable isotopic characteristics of stratiform copper deposits in the coastal Cordillera of northern Chile. Miner Depos 38:208–216

    Google Scholar 

  • Kyser TK, O’Neil J (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:48–53

    Article  Google Scholar 

  • Kyser TK, Lesher CE, Walker D (1998) The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contrib Mineral Petrol 133:373–381

    Article  Google Scholar 

  • Leach AM, Hieftje GM (2001) Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 73:2959–2967

    Article  Google Scholar 

  • Lindblom S, Broman C, Martinsson O (1996) Magmatic–hydrothermal fluids in the Pahtohavare Cu–Au deposit in greenstone at Kiruna, Sweden. Miner Depos 31:307–318

    Article  Google Scholar 

  • Longstaffe FJ (1987) Stable isotope studies of diagenetic processes. In: Kyser TK(ed) Stable isotope geochemistry of low temperature fluids. Mineralogical Association of Canada Short Course Series 13, pp 187–257

  • Mahoney P, Li G, Hieftje GM (1996) Laser ablation–inductively coupled plasma mass spectrometry with a time-of-flight analyzer. J Anal At Spectrom 11:401–405

    Article  Google Scholar 

  • Mark G, Oliver NHS (2006) Mineralogical and chemical evolution of the Ernest Henry Fe oxide–Cu–Au ore system, Cloncurry district, northwest Queensland, Australia. Miner Depos 40:769–801

    Article  Google Scholar 

  • Mark G, Oliver NHS, Williams PJ, Valenta RK, Crookes RA (2000) The evolution of the Ernest Henry Fe-oxide–(Cu–Au) hydrothermal system. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 123–136

    Google Scholar 

  • Marschik R, Fontboté L (2001) The Candelaria–Punta del Cobre iron oxide Cu–Au (–Zn, Ag) deposits, Chile. Econ Geol 96:1799–1826

    Article  Google Scholar 

  • McGowan RR, Roberts S, Boyce AJ (2006) Origin of the Nchanga copper–cobalt deposits of the Zambian Copperbelt. Miner Depos 40:617–638

    Article  Google Scholar 

  • Mukasa SB, Henry DJ (1990) The San Nicolás Batholith of coastal Peru: Early Paleozoic continental arc or continental rift magmatism. J Geol Soc Lond 147:27–39

    Article  Google Scholar 

  • Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold & related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 207–228

  • Nielsen H (1979) Sulfur isotopes. In: Jager E, Hunziker J (eds) Lectures in isotope geology. Springer, Berlin, pp 283–312

    Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610

    Article  Google Scholar 

  • Ohmoto H, Goldhaber M (1997) Sulphur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 517–611

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulphur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 509–567

    Google Scholar 

  • Olivo GR, Chang F, Kyser TK (2006) Formation of the auriferous and barren North Dipper Veins in the Sigma Mine, Val d’Or, Canada: constraints from structural, mineralogical, fluid Inclusion, and isotopic data. Econ Geol 101:607–631

    Article  Google Scholar 

  • Oreskes N, Einaudi MT (1992) Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluid inclusion and stable isotopes. Econ Geol 87:64–90

    Article  Google Scholar 

  • Perring CS, Pollard PJ, Dong G, Nunn AJ, Blake KL (2000) The Lightning Creek sill complex, Cloncurry district, Northwestern Queensland: a source of fluids for the Fe oxide Cu–Au mineralization and sodic–calcic alteration. Econ Geol 95:1037–1089

    Article  Google Scholar 

  • Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralization. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits: a global perspective. Austral Miner Fund, Adelaide, pp 27–41

    Google Scholar 

  • Pollard PJ (2001) Sodic(–calcic) alteration associated with Fe-oxide–Cu–Au deposits: An origin via unmixing of magmatic-derived H2O–CO2–salt fluids. Miner Depos 36:93–100

    Article  Google Scholar 

  • Pollard PJ (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Depos 41:179–187

    Article  Google Scholar 

  • Requia K, Stein H, Fontboté L, Chiaradia M (2003) Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil. Miner Depos 38:727–738

    Article  Google Scholar 

  • Rhodes AL, Oreskes N, Sheets S (1999) Geology and rare earth element geochemistry of magnetic deposits at El Laco, Chile. Soc Econ Geol Spec Publ 7:299–332

    Google Scholar 

  • Ripley EM, Ohmoto H (1977) Mineralogic, sulphur isotope, and fluid inclusion studies of the stratabound copper deposits at the Raúl mine, Peru. Econ Geol 72:1017–1041

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineralogical Society of America Rev Miner 12:646

    Google Scholar 

  • Rotherham JF, Blake KL, Cartwright I, Williams PJ (1998) Stable isotope evidence for the origin of the Mesoproterozoic Starra Au–Cu deposit, Cloncurry district, northwest Queensland. Econ Geol 93:1435–1449

    Article  Google Scholar 

  • Seedorff E, Einaudi M (2004) Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Econ Geol 99:39–72

    Article  Google Scholar 

  • Sharma T, Clayton RN (1965) Measurement of 18O/16O ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29:1347–1353

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Article  Google Scholar 

  • Skirrow RG, Walsh JL (2002) Reduced and oxidized Au–Cu–Bi deposits of the Tennant Creek inlier, Australia: an integrated geologic and chemical model. Econ Geol 97:1167–1202

    Article  Google Scholar 

  • Smith MP, Henderson P (2000) Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China. Econ Geol 95:1371–1388

    Article  Google Scholar 

  • Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Article  Google Scholar 

  • Syn Flint Inc. (1985) Synthetic fluid inclusions: manual accompanying synthetic fluid inclusions. State College, Pennsylvania, p 34

    Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotopic variation of C, H and S. Rev Miner 16:185–271

    Google Scholar 

  • Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 229–302

    Google Scholar 

  • Taylor HP, Epstein S (1962) Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks, part I. Geol Soc Am Bull 73:461–480

    Article  Google Scholar 

  • Ullrich TD, Clark AH (1999) The Candelaria Cu–Au deposit, III Región, Chile: paragenesis, geochronology and fluid composition. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 201–204

    Google Scholar 

  • Ullrich TD, Clark AH, Kyser TK (2001) The Candelaria Cu–Au deposit, III Región, Chile: product of long-term mixing of magmatic-hydrothermal and evaporite-sourced fluids. GSA Annual Meeting, Boston, Abstracts with Programs, p A-3

  • Ulrich T, Guenther D, Heinrich CA (2001) The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions; Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:343–385

  • Vidal CE, Injoque-Espinoza JL, Sidder GB, Mukasa SB (1990) Amphibolitic Cu–Fe skarn deposits in the central coast of Peru. Econ Geol 85:1447–1461

    Article  Google Scholar 

  • Vila T, Lindsay N, Zamora R (1996) Geology of the Mantoverde copper deposit, northern Chile: a specularite-rich, hydrothermal–tectonic breccia related to the Atacama Fault Zone. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization styles and metallogeny. Society of Economic Geologists, Special Publication 5, pp 157–169

  • Wanhainen C, Broman C, Martinsson O (2003) The Aitik Cu–Au–Ag deposit in northern Sweden: a product of high salinity fluids. Miner Depos 38:715–726

    Article  Google Scholar 

  • Williams PJ (2010) Classifying IOCG deposits. In: Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes 20, pp 11–19

  • Williams PJ, Dong G, Ryan CG, Pollard PJ, Rotherham JF, Mernagh TP, Chapman LH (2001) Geochemistry of hypersaline fluid inclusions from the Starra (Fe oxide)–Au–Cu deposit, Cloncurry district, Queensland. Econ Geol 96:875–883

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, Halter AD, Mark G, Oliver NHS, Marschik R (2005) Iron-oxide copper–gold deposits: geology, space-time distribution, and possible modes of origin. Economic Geology 100th Anniversary Volume, pp 371–405

  • Xu G, Pollard PJ (1999) Origin of CO2-rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold Belt, NW Queensland, and their implications for mineralization. Miner Depos 34:395–404

    Article  Google Scholar 

  • Zhao ZF, Zheng YF (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported logistically by Shougang Hierro Perú SA, Chariot Resources and Rio Tinto Mining and Exploration Ltd. which gave permission for this publication, and by National Science and Engineering Research Council of Canada operating grants to Alan H. Clark and T. Kurtis Kyser and equipment grants to the latter. Dr. Louise Corriveau and Dr. Mark Barton are thanked for their comments which have greatly improved this paper. Kerry Klassen provided expert assistance in the stable isotope analysis. LA-TOF-ICPMS analysis was carried out in collaboration with April Vuletich and Rui Zhang at Queen’s University. Discussions with Gregory Lester, Allan Montgomery and Jorge Benavides provided considerable insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayong Chen.

Additional information

Editorial handling: R.P. Xavier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Kyser, T.K. & Clark, A.H. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide–Cu (–Ag–Au) deposits, south-central Perú. Miner Deposita 46, 677–706 (2011). https://doi.org/10.1007/s00126-011-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0343-x

Keywords

Navigation