Skip to main content
Log in

Sequence of magma emplacement and sulfide saturation in the Gaojiacun–Lengshuiqing intrusive complex (SW China)

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Lengshuiqing area contains several small intrusions made up of peridotite ± quartz diorite ± granite spatially associated with the Gaojiacun pluton (gabbroids + peridotite + diorite). Ni–Cu sulfide ore occur at Lengshuiqing, hosted in peridotite. SHRIMP U–Pb zircon dating produced the ages of 803 ± 4.2 Ma (peridotite), 807 ± 2.6 Ma (oikocrystic hornblende gabbro), 809 ± 4.3 Ma (hornblende gabbronorites) for the Gaojiacun pluton and 807 ± 3.8 Ma (diorite, intrusion I), 817 ± 6.3 Ma (quartz diorite, intrusion II) and 817 ± 5 Ma (peridotite, intrusion 101) for Lengshuiqing. These ages suggest the emplacement of the Gaojiacun pluton later than the intrusions from Lengshuiqing. The olivine from Lengshuiqing does not contain sulfide inclusions and is relatively Ni-rich (1,150–1,550 ppm Ni), suggesting its crystallisation before the sulfide saturation that generated the Ni–Cu deposits. The olivine of the gabbros in the Gaojiacun pluton is Ni-poor (250–800 ppm), which indicates crystallisation from a severely metal-depleted magma after a sulfide saturation event. The olivine in the peridotites from the Gaojiacun pluton has 800–1,150 ppm Ni and contains sulfide inclusions. Moreover, geological evidence suggests the genesis of the peridotites from Gaojiacun in conduits that were ascending through the gabbroids. A sequence of at least three stages of magma emplacement is proposed: (1) Lengshuiqing; (2) gabbroids from Gaojiacun; (3) peridotites from Gaojiacun. Given the age differences, the intrusions at Lengshuiqing and the Gaojiacun pluton might have been produced by different magmatic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arndt NT (1977) Partitioning of nickel between olivine and ultrabasic and basic komatiite liquids. Carnegie Inst Wash Yearb 75:553–557

    Google Scholar 

  • Arndt NT, Lesher CM, Czamanske GK (2005) Mantle-derived magmas and magmatic Ni–Cu–(PGE) deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniversary Volume, pp 5–23

  • Barnes S-J, Francis D (1995) The distribution of platinum-group elements, nickel, copper and gold in the muskox layered intrusion, Northwest Territories, Canada. Econ Geol 90:135–154

    Article  Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniversary Volume, pp 179–213

  • Barnes S-J, Picard CP (1993) The behaviour of platinum-group elements during partial melting, crystal fractionation and sulfide segregation: an example from the Cape Smith fold belt, northern Quebec. Geochim Cosmochim Acta 57:79–87

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JM, Davis DW, Korscha RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen M, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Article  Google Scholar 

  • Brügmann GE, Naldrett AJ, Asif M, Lightfoot PC, Gorbachev NS, Fedorenko VA (1993) Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril’sk region, Russia. Geochim Cosmochim Acta 57:2001–2018

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ (1979) The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology 74:1503–1506

    Article  Google Scholar 

  • Cawthorn G, Walraven F (1998) Emplacement and crystallisation time for the Bushveld Complex. J Petrol 39:1669–1687

    Article  Google Scholar 

  • Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren WA, Kent DV, Aubrey MP, Hardenbol J (eds) Geochronology time scales and global stratigraphic correlation. SEPM (Society for Sedimentary Geology), Special Publication 54, pp 3–21

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircon from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89:525–534

    Article  Google Scholar 

  • De Laeter JR, Kennedy AK (1998) A double focussing mass spectrometer for geochronology. Int J Mass Spectrom Ion Process 178:43–50

    Google Scholar 

  • Evans-Lamswood DM, Butt DP, Jackson RS, Lee DV, Muggridge MG, Wheeler RI (2000) Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu–Co deposit, Labrador. Econ Geol 95:749–769

    Article  Google Scholar 

  • Farmer GL (2003) Continental basaltic rocks. In: Holland HD, Turekian KK (eds) Treatise of geochemistry 3:85–121. Elsevier

  • Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB) and effect of oxygen abundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chem Geol 85:199–213

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846

    Article  Google Scholar 

  • Greenough JD, Owen JV (1992) Platinum-group element geochemistry of continental tholeiites: analysis of the Long Range dyke swarm, Newfoundland, Canada. Chem Geol 98:203–219

    Article  Google Scholar 

  • Irvine TN (1975) Crystallization sequences in the Muskox intrusion and other layered intrusions—II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochim Cosmochim Acta 39:991–1020

    Article  Google Scholar 

  • Jana D, Walker D (1997) The influence of sulfur on partitioning of siderophile elements. Geochim Cosmochim Acta 61:5255–5277

    Article  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise of geochemistry 3:593–659. Elsevier

  • Kennedy AK, de Laeter JR (1994) The performance characteristics of the WA SHRIMP II ion microprobe. Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. Berkeley, USA, US Geological Survey Circular 1107, p 166

  • Kinzler RJ, Grove TL, Recca SI (1990) An experimental study of the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochim Cosmochim Acta 54:1255–1265

    Article  Google Scholar 

  • Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (eds) Treatise of geochemistry 3:433–463. Elsevier

  • Li C, Naldrett AJ (1999) Geology and petrology of the Voisey’s Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos 47:1–31

    Article  Google Scholar 

  • Li XL, Tong CH (1995) Determination of all platinum group elements in six new Chinese PGE geochemical standard reference samples using neutron activation analysis after a nickel sulfide fire assay preconcentration. Geostandards and Geoanalytical Research 19:25–26

    Article  Google Scholar 

  • Li C, Maier WD, de Waal SA (2001) Magmatic Ni–Cu versus PGE deposits: contrasting genetic controls and exploration implications. S Afr J Geol 104:309–318

    Article  Google Scholar 

  • Li C, Ripley EM, Mathez EA (2003) The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chem Geol 201:295–306

    Article  Google Scholar 

  • Li XH, Li ZX, Sinclair JA, Li WX, Carter G (2006) Revisiting the “Yanbian Terrane”: implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Res 151:14–30

    Google Scholar 

  • Ludwig KR (2002) SQUID 1.02, a user’s manual. Berkeley Geochronology Center Special Publication 2

  • Ludwig KR (2003) Isoplot 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochron, Center Special Publication No. 4, 70 pp

  • Maier WD, Li C, De Waal SA (2001) Why are there no major Ni–Cu sulfide deposits in large layered mafic–ultramafic intrusions? Can Min 39:547–556

    Article  Google Scholar 

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • Munteanu M, Wilson AH (2009) The South China piece in the Rodinian puzzle Comment on “Assembly, configuration, and break-up history of Rodinia: a synthesis” by Li et al. (2008) [Precambrian Res. 160, 179–210]. Precambrian Res 171:74–76

    Article  Google Scholar 

  • Munteanu M, Yao Y (2007) The Gaojiacun intrusion: rift- or subduction-related? A discussion on “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China” by Li et al. (2006). Precambrian Res 155:324–327

    Article  Google Scholar 

  • Munteanu M, Yao Y, Wilson AH, Chunnett G, Luo YN, Zhao QX (2006) The Gaojiacun mafic–ultramafic complex (Sichuan, SW China)—Late Proterozoic magmatism at the western margin of the Yangtze Craton. Acta Geol Sin 80:705–723

    Google Scholar 

  • Munteanu M, Wilson AH, Yao Y, Harris C, Chunnett G, Luo Y (2010a) The Tongde dioritic pluton (Sichuan, SW China) and its geotectonic setting: regional implications of a local-scale study. Gondwana Research. doi:10.1016/j.gr.2010.01.005

  • Munteanu M, Wilson AH, Yao Y, Jiang SY, Chunnett G, Luo Y, Mafurutu L, Phadagi R (2010b) A conduit-related genesis of the Lengshuiqing intrusive assemblage (Sichuan, SW China). J Volcanol Geoth Res 189:118–130

    Article  Google Scholar 

  • Naldrett AJ (1997) Key factors in the genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s Bay and other world-class Ni–Cu–PGE deposits: implications for exploration. Aust J Earth Sci 44:283–315

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits. Geology, geochemistry and exploration. Springer, Berlin

    Google Scholar 

  • Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389

    Article  Google Scholar 

  • Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, van Bronswjk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. In: Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. Berkeley, USA. Abstracts Vol., U.S. Geological Survey Circular 1107:251

  • Rajamani V, Naldrett AJ (1978) Partitioning of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni–Cu sulfide deposits. Econ Geol 73:82–93

    Article  Google Scholar 

  • Shen S, Zhang B, Yuan Y (1986) The petrological study of the basic–ultrabasic complex in Yanbian, Sichuan Province. Earth Science–Journal of Wuhan College of Geology 11(6):561–569 (in Chinese with English abstract)

    Google Scholar 

  • Shen WZ, Gao JF, Xu SJ, Tan GQ, Yang ZS, Yang QW (2003) Formation age and geochemical characteristics of the Lengshuiqing body, Yanbian, Sichuan province. Acta Petrologica Sinica 19:27–37 (in Chinese with English abstract)

    Google Scholar 

  • Simkin T, Smith JV (1970) Minor element distribution in olivine. J Geol 78:304–325

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC (eds) Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7:1–35

  • Wingate MTD (2001) SHRIMP baddeleyite and zircon ages for an Umkondo dolerite sill, Nyanga Mountains, Eastern Zimbabwe, South African. J Geol 104:13–22

    Google Scholar 

  • Yang X, Li H, Yang ZT, Lu Y, Pan XP, Yao WG, Wei G (1993) Pt-bearing basic and ultrabasic bodies and Pt-group deposits in China. Xi’an Jiaotong University Press, Xi’an, 184 pp (in Chinese)

    Google Scholar 

  • Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH, Sun M (2006) The Yanbian Terrane (Southern Sichuan Province, SW China): a Late Proterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res 144:19–38

    Article  Google Scholar 

  • Zhu WG, Zhong H, Deng HL, Wilson AH, Liu BG, Li CY (2006) SHRIMP zircon U–Pb age, geochemistry and Nd–Sr isotopes of the Gaojiacun mafic–ultramafic intrusive complex, SW China. Int Geol Rev 48:650–668

    Article  Google Scholar 

  • Zhu WG, Zhong H, Li XH, Liu BG, Deng HL, Qin Y (2007) 40Ar–39Ar age, Geochemistry and Sr–Nd–Pb isotopes of the Neoproterozoic Lengshuiqing Cu–Ni sulfide-bearing mafic–ultramafic complex, SW China. Precambrian Res 155:98–124

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on research funded by Anglo Platinum and by a THRIP grant from the South African Government under the auspices of the National Research Foundation (NRF). Dr. Willie Oldewage and Dr. Christian Reinke, from the University of Johannesburg, are thanked for the assistance during the measurement of olivine compositions. We are grateful to Dr. Allen Kennedy (Curtin University of Technology, Perth) for SHRIMP dating. Ms. Du Jinhua is thanked for the translation of the Chinese articles. The article benefited from the comments made by Christina YanWang, Bernd Lehmann and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Munteanu.

Additional information

Editorial handling: C.Y. Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

SHRIMP zircon dating results for rocks of the Gaojiacun–Lengshuiqing intrusive assemblage. Common Pb corrected using measured 204Pb. err corr error of correlation. The results in italics were excepted from the calculation of the mean ages (DOC 296 kb)

ESM 2

Contents of the chalcophile elements in the barren rocks from Lengshuiqing. The location of the country rock samples is indicated by the name of the closest intrusion (DOC 88 kb)

ESM 3

Contents of the chalcophile elements in ore samples from Lengshuiqing (DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munteanu, M., Wilson, A.H., Yao, Y. et al. Sequence of magma emplacement and sulfide saturation in the Gaojiacun–Lengshuiqing intrusive complex (SW China). Miner Deposita 45, 517–529 (2010). https://doi.org/10.1007/s00126-010-0289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0289-4

Keywords

Navigation