Skip to main content

Advertisement

Log in

Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Insulin exerts a direct action on vascular cells, thereby affecting the outcome and progression of diabetic vascular complications. However, the mechanism through which insulin signalling is impaired in the endothelium of diabetic individuals remains unclear. In this work, we have evaluated the role of the AGE precursor methylglyoxal (MGO) in generating endothelial insulin resistance both in cells and in animal models.

Methods

Time course experiments were performed on mouse aortic endothelial cells (MAECs) incubated with 500 μmol/l MGO. The glyoxalase-1 inhibitor S-p-bromobenzylglutathione-cyclopentyl-diester (SpBrBzGSHCp2) was used to increase the endogenous levels of MGO. For the in vivo study, an MGO solution was administrated i.p. to C57BL/6 mice for 7 weeks.

Results

MGO prevented the insulin-dependent activation of the IRS1/protein kinase Akt/endothelial nitric oxide synthase (eNOS) pathway, thereby blunting nitric oxide (NO) production, while extracellular signal-regulated kinase (ERK1/2) activation and endothelin-1 (ET-1) release were increased by MGO in MAECs. Similar results were obtained in MAECs treated with SpBrBzGSHCp2. In MGO- and SpBrBzGSHCp2-exposed cells, inhibition of ERK1/2 decreased IRS1 phosphorylation on S616 and rescued insulin-dependent Akt activation and NO generation, indicating that MGO inhibition of the IRS1/Akt/eNOS pathway is mediated, at least in part, by ERK1/2. Chronic administration of MGO to C57BL/6 mice impaired whole-body insulin sensitivity and induced endothelial insulin resistance.

Conclusions/interpretation

MGO impairs the action of insulin on the endothelium both in vitro and in vivo, at least in part through an ERK1/2-mediated mechanism. These findings may be instrumental in developing novel strategies for preserving endothelial function in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ECE:

Endothelin-converting enzyme

ENOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

ET-1:

Endothelin-1

Glo1:

Glyoxalase-1

MAEC:

Mouse aortic endothelial cell

MAPK:

Mitogen-activated protein kinase

MGO:

Methylglyoxal

NO:

Nitric oxide

PI3K:

Phosphatidylinositol 3-kinase

SpBrBzGSHCp2:

S-p-Bromobenzylglutathione-cyclopentyl-diester

References

  1. Schalkwijk CG, Stehouwer (2005) CDA: vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143–159

    Article  CAS  PubMed  Google Scholar 

  2. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mäkimattila S, Virkamäki A, Groop PH et al (1996) Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 94:1276–1282

    Article  PubMed  Google Scholar 

  4. Diederich D, Skopec J, Diederich A, Dai FX (1994) Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol 266:H1153–H1161

    CAS  PubMed  Google Scholar 

  5. Pflueger AC, Osswald H, Knox FG (1999) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am J Physiol 276:F340–F346

    CAS  PubMed  Google Scholar 

  6. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 94:2511–2515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Andreozzi F, Laratta E, Procopio C et al (2007) Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 27:2372–2383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kubota T, Kubota N, Moroi M et al (2003) Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury. Circulation 107:3073–3080

    Article  CAS  PubMed  Google Scholar 

  9. Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ (2002) Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 16:1931–1942

    Article  CAS  PubMed  Google Scholar 

  10. Eringa EC, Stehouwer CD, Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P (2004) Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol 287:H2043–H2048

    Article  CAS  PubMed  Google Scholar 

  11. Muniyappa R, Iantorno M, Quon MJ (2001) An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am 37:685–711

    Article  Google Scholar 

  12. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  13. Goh SY, Cooper ME (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93:1143–1152

    Article  CAS  PubMed  Google Scholar 

  14. Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG (2003) Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem Soc Trans 31:1400–1402

    Article  CAS  PubMed  Google Scholar 

  16. Thornalley PJ (2005) Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 1043:111–117

    Article  CAS  PubMed  Google Scholar 

  17. Rabbani N, Thornalley PJ (2011) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309–317

    Article  CAS  PubMed  Google Scholar 

  18. Fleming TH, Humpert PM, Nawroth PP, Bierhaus A (2011) Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology 57:435–443

    CAS  PubMed  Google Scholar 

  19. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  CAS  PubMed  Google Scholar 

  20. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Desai K, Chang T, Wu L (2005) Vascular methylglyoxal metabolism and the development of hypertension. J Hypertens 23:1565–1573

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Chang T, Jiang B, Desai K, Wu L (2007) Attenuation of hypertension development by aminoguanidine in spontaneously hypertensive rats: role of methylglyoxal. Am J Hypertens 20:629–636

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Jia X, Chang T, Desai K, Wu L (2008) Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens 26:765–772

    Article  CAS  PubMed  Google Scholar 

  24. Berlanga J, Cibrian D, Guillén I et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond) 109:83–95

    Article  CAS  Google Scholar 

  25. Cassese A, Raciti GA, Fiory F et al (2013) Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15. PLoS One 8(4):e60555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McLellan AC, Phillips SA, Thornalley PJ (1992) The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem 206:17–23

    Article  CAS  PubMed  Google Scholar 

  27. Thornalley PJ, Edwards LG, Kang Y et al (1996) Antitumor activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Biochem Pharmacol 51:1365–1372

    Article  CAS  PubMed  Google Scholar 

  28. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    Article  CAS  PubMed  Google Scholar 

  29. Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571

    Article  CAS  PubMed  Google Scholar 

  30. Cersosimo E, DeFronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423–436

    Article  CAS  PubMed  Google Scholar 

  31. Federici M, Pandolfi A, de Filippis EA et al (2004) G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation 109:399–405

    Article  CAS  PubMed  Google Scholar 

  32. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165–189

    Article  CAS  PubMed  Google Scholar 

  33. Jia X, Wu L (2007) Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol Cell Biochem 306:133–139

    Article  CAS  PubMed  Google Scholar 

  34. Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, van Obberghen E (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 55:1289–1299

    Article  CAS  PubMed  Google Scholar 

  35. Sen U, Tyagi N et al (2009) Fibrinogen-induced endothelin-1 production from endothelial cells. Am J Physiol Cell Physiol 296:C840–C847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  37. Glotin AL, Calipel A, Brossas JY, Faussat AM, Tréton J, Mascarelli F (2006) Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells. Invest Ophthalmol Vis Sci 47:4614–4623

    Article  PubMed  Google Scholar 

  38. Guo Q, Mori T, Jiang Y et al (2009) Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. Hypertension 27:1664–1671

    CAS  Google Scholar 

  39. Shiekh GA, Ayub T, Khan SN, Dar R, Andrabi KI (2011) Reduced nitrate level in individuals with hypertension and diabetes. J Cardiovasc Dis Res 2:172–176

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12

    CAS  PubMed  Google Scholar 

  41. Raoch V, Rodríguez-Pascual F, López-Martínez V et al (2011) Nitric oxide decreases the expression of endothelin-converting enzyme-1 through mRNA destabilization. Arterioscler Thromb Vasc Biol 31:2577–2585

    Article  CAS  PubMed  Google Scholar 

  42. Dhar A, Desai KM, Wu L (2010) Alagebrium attenuates acute methylglyoxal-induced glucose intolerance in Sprague-Dawley rats. Br J Pharmacol 159:166–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this work to the memory of Prof. Angelika Bierhaus (Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany). Some of the data were presented as an abstract at the EASD meeting, Lisbon, in 2011 and at the IR2013 Symposium, Barcelona, in 2013.

Funding

The study was supported in part by the Ministero dell’Università e della Ricerca Scientifica, grants PRIN (2009FATXW3_003 to CM and 2009C2LTS2_002 to FB), SID-FO.DI.RI (2013 to CM), MERIT (RBNE08NKH7 to FB) and P.O.R. Campania FSE 2007-2013 Project CREMe, and by grants from the Deutsche Forschungsgemeinschaft (BI-1281/3-1 to A. Bierhaus/T. H. Fleming) and the Dietmar-Hopp-Stiftung (to A. Bierhaus/T. H. Fleming).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

CN conceived and designed the experiments, acquired data, analysed data and wrote the manuscript. GAR reviewed/edited the manuscript and collected and analysed data. AL, IP, ML, FF, PM, LU and VD collected data and revised the manuscript. THF and PPN provided reagents/materials, acquired data and critically reviewed the manuscript. PF and FB interpreted data and reviewed/edited the manuscript. CM designed the research and supervised the project, reviewed/edited the manuscript and contributed to the discussion. CM is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Miele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 63.6 kb)

ESM Fig. 2

(PDF 28.3 kb)

ESM Fig. 3

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigro, C., Raciti, G.A., Leone, A. et al. Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia 57, 1485–1494 (2014). https://doi.org/10.1007/s00125-014-3243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3243-7

Keywords

Navigation