Skip to main content
Log in

Sanctacaris uncata: the oldest chelicerate (Arthropoda)

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The morphology of the arthropod Sanctacaris uncata, from the Middle Cambrian Burgess Shale of Canada, is reinterpreted based on a restudy of previously described material. Although originally considered a chelicerate-like arthropod, these affinities were dismissed based primarily on interpretations of the anterior appendages and hypotheses which considered the megacheirans (‘great-appendage’ arthropods) as putative ancestors of chelicerates. The similarities between megacheirans and chelicerates appear to be overstated however, and this study instead reaffirms the identity of putative chelicerate feature in S. uncata and similar arthropods such as Sidneyia and Emeraldella, both also from the Middle Cambrian Burgess Shale. Newly interpreted features, including the presence of pediform exites, multi-partite trunk exopods, and a trunk differentiated into an anterior limb-bearing area and a differentiated posterior limbless abdomen, were coded into an extensive phylogenetic data set of fossil and recent arthropods. In all analyses, Sanctacaris resolved as the basal-most member of total-group Euchelicerata (the least inclusive group including horseshoe crabs and arachnids but not pycnogonids), thus making it the oldest chelicerate in the fossil record. The vicissicaudates (including Sidneyia, Emeraldella, aglaspidids, and cheloniellids—all of which have previously been allied to chelicerates) resolved as sister-taxon to crown-group Chelicerata. This topology indicates that many purported chelicerate features, such as lamellar gills, and a differentiated posterior abdomen evolved sequentially in the chelicerate stem-lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bergström J, Hou X-G (2003) Arthropod origins. Bull Geosci 78:323–334

    Google Scholar 

  • Bousfield EL (1995) A contribution to the natural classification of Lower and Middle Cambrian arthropods: food-gathering and feeding mechanism. Amphipacifica 2:3–34

    Google Scholar 

  • Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

    Article  PubMed  Google Scholar 

  • Boxshall GA (2013) Arthropod limbs and their development. In: Minelli A, Boxshall G, Frusco G (eds) Arthropod biology and evolution. Molecules, development, morphology, Springer, pp. 241–267

  • Briggs DEG, Collins D (1988) A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology 31:779–798

    Google Scholar 

  • Briggs DEG, Collins D (1999) The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology 42:953–977

    Article  Google Scholar 

  • Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg DA (2012) A Silurian horseshoe crab illuminates the evolution of chelicerate limbs. Proc Natl Acad Sci U S A 109:15702–15705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruton DL (1981) The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Phil Trans R Soc Lond B 295:619–653

    Article  Google Scholar 

  • Bruton DL, Whittington HB (1983) Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, middle Cambrian, British Columbia. Phil Trans R Soc Lond B 300:553–582

    Article  Google Scholar 

  • Budd G (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275

    Article  CAS  PubMed  Google Scholar 

  • Chen J-Y, Waloszek D, Maas A (2004) A new ‘great-appendage arthropod’ from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Google Scholar 

  • Collins D, Briggs DEG, Conway MS (1983) New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 22:163–167

    Article  Google Scholar 

  • Cotton TJ, Braddy SJ (2004) The phylogeny of arachnomorph arthropods and the origin of Chelicerata. Trans R Soc Edinb Earth Sci 94:169–193

    Google Scholar 

  • Dewel RA, Dewel WC (1997) The place of tardigrades in arthropod evolution. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 109–123

    Google Scholar 

  • Dunlop JA (2005) New ideas about the euchelicerate stem-lineage. In: Deltshev C, Stoev P (eds) European arachnology 2005, pp. 9–23. Acta Zool Bulg Suppl 1

  • Dunlop JA, Selden PA (1997) The early history and phylogeny of the chelicerates. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 221–238

    Google Scholar 

  • Dunlop JA, Anderson LI, Braddy SJ (2004) A redescription of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata, Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Trans R Soc Edinb Earth Sci 94:207–225

    Google Scholar 

  • Edgecombe GD, García-Bellido DC, Paterson JR (2011) A new leanchoiliid megacheiran arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol Pol 56:385–400

    Article  Google Scholar 

  • Eldredge N (1974) Revision of the Synziphosura (Chelicerata, Merostomata), with remarks on merostome phylogeny. Am Mus Novit 2543:1–41

    Google Scholar 

  • Fletcher TP, Collins DH (1998) The Middle Cambrian Burgess Shale and its relationship to the Stephen formation in the Southern Canadian Rocky Mountains. Can J Earth Sci 17:400–418

    Google Scholar 

  • Fletcher TP, Collins DH (2003) The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Can J Earth Sci 40:1823–1838

    Article  Google Scholar 

  • Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

  • Goloboff PA, Carpenter JM, Salvador Arias J, Rafael Miranda Esquivel D (2008a) Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24:758–773

    Article  Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008b) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Haug JT, Waloszek D, Maas A, Liu Y, Haug C (2012) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–399

    Article  Google Scholar 

  • Hesselbo SP (1992) Aglaspidida (Arthropoda) from the Upper Cambrian of Wisconsin. J Paleontol 66:885–923

    Google Scholar 

  • Hou X-G, Bergström J (1997) Arthropods of the lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45:1–116

    Google Scholar 

  • Lamsdell JC (2013) Revised systematics of the Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zool J Linn Soc 167:1–27

    Article  Google Scholar 

  • Lauterbach K-E (1980) Schlüsselereignisse in der Evolution des Grundplans der Arachnata (Arthropoda). Abh Verh Naturwiss Vereins Hamburg 26:293–320

    Google Scholar 

  • Lee MSY, Soubrier J, Edgecombe GD (2013) Rates of phenotypic and genomic evolution during the Cambrian explosion. Curr Biol 23:1–7

    CAS  Google Scholar 

  • Legg DA (2013) Multi-segmented arthropods from the middle Cambrian of British Columbia (Canada). J Paleontol 87:493–501

    Article  Google Scholar 

  • Legg DA, Caron J-B (2014) New Middle Cambrian bivalved arthropods from the Burgess Shale (British Columbia, Canada). Palaeontology 57:691–711

    Article  Google Scholar 

  • Legg DA, Sutton MD, Edgecombe GD, Caron J-B (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc R Soc B 279:4699–4704

    Article  PubMed Central  PubMed  Google Scholar 

  • Legg DA, Sutton MD, Edgecombe GD (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat Commun 4:2485

    Article  PubMed  Google Scholar 

  • Ma X, Hou X-G, Edgecombe GD, Strausfeld NJ (2012) Complex brain and optic lobes in an early Cambrian arthropod. Nature 490:258–261

    Article  CAS  PubMed  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Orr PJ, Siveter DJ, Briggs DEG, Siveter DJ, Sutton MD (2000) A new arthropod from the Silurian Konservat-Lagerstätte of Herefordshire, England. Proc R Soc Lond B 267:1497–1504

    Article  CAS  Google Scholar 

  • Ortega-Hernández J, Legg DA, Braddy SJ (2013) The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics 29:15–45

    Article  Google Scholar 

  • Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus Polyphemus and Tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jahrb Abt Anat Ontog 121:331–357

    Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398

    Article  CAS  PubMed  Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Head, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships. Taylor & Francis, Oxford, pp 139–165

    Chapter  Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415

    Article  PubMed  Google Scholar 

  • Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG (2013) Distal-less and dashshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev 15:228–242

    Article  CAS  PubMed  Google Scholar 

  • Siveter DJ, Briggs DEG, Siveter DJ, Sutton MD, Legg DA, Joomun S (2014) A Silurian short-great-appendage arthropod. Proc R Soc Lond B 281 (in press)

  • Stein M (2013) Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans. Zool Anz 253:164–178

    Article  Google Scholar 

  • Stein M, Selden PA (2012) A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. J Syst Palaeontol 10:361–383

    Article  Google Scholar 

  • Størmer L (1944) On the relationships and phylogeny of fossil and recent Arachnomorpha. Skrift Norske Vidensk Acad I Oslo 5:1–158

    Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and structural significance. Harvard University Press, Cambridge, p 650

    Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ, Orr PJ (2002) The arthropod Offacolus kingi (Chelicerata) from the Silurian of Herefordshire, England: computer based morphological reconstructions and phylogenetic affinities. Proc R Soc Lond B 269:1195–1203

    Article  Google Scholar 

  • Tanaka G, Hou X-G, Ma X, Edgecombe GD, Strausfeld NJ (2013) Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502:364–367

    Article  CAS  PubMed  Google Scholar 

  • Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, el Hariri K, Briggs DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465:215–218

    Article  PubMed  Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446

    Article  Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships—the phylogenetic-systematic approach. J Zool Syst Evol Res 24:19–35

    Article  Google Scholar 

  • Wills MA, Briggs DEG, Fortey RA, Wilkinson M (1995) The significance of fossils in understanding arthropod evolution. Verh Dtsch Zool Ges 88:203–215

    Google Scholar 

  • Wills MA, Briggs DEG, Fortey RA, Wilkinson M, Sneath PHA (1998) An arthropod phylogeny based on fossil and recent taxa. In: Edgecombe GD (ed) Arthropod fossils and phylogeny. Columbia University Press, New York, pp 33–105

    Google Scholar 

  • Yang J, Ortega-Hernández J, Butterfield NJ, Zhang X-G (2013) Specialized appendages in fuxianhuiids and the head organization of early arthropods. Nature 494:468–471

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-Q (2011) Phylum Arthropoda von Siebold 1848. Zootaxa 3148:99–103

    Google Scholar 

  • Zhang X-L, Shu D-G (2005) A new arthropod from the Chengjiang Lagerstätte, Early Cambrian, southern China. Alcheringa 29:185–194

    Article  Google Scholar 

Download references

Acknowledgments

Thanks go to J.-B. Caron and P. Fenton, both at the Royal Ontario Museum, Toronto (ROM), for access to material in their care. Thanks also to Nicola Woods (ROM) for providing additional photographs of Sanctacaris uncata, J. Lamsdell (Yale Peabody Museum) for providing additional photos of Sidneyia inexpectans, G. Edgecombe (Natural History Museum, London) and J. Dunlop (Museum für Naturkunde, Berlin) for the comments on an earlier version of this manuscript and X. Ma (NHM, London) and J. Ortega-Hernández for the critical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Legg.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 88 kb)

Supplementary figure 1

(DOCX 903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legg, D.A. Sanctacaris uncata: the oldest chelicerate (Arthropoda). Naturwissenschaften 101, 1065–1073 (2014). https://doi.org/10.1007/s00114-014-1245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1245-4

Keywords

Navigation