Skip to main content
Log in

Designermedikamente in der Tumortherapie

Designer-drugs in tumor treatment

  • Therapiewandel in der Inneren Medizin
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die gezielte, auf dem Verständnis der molekularen Grundlagen der Erkrankung beruhende Therapie von Malignomen in der Hämatologie und Onkologie ist beispielhaft für eine wesentliche Weiterentwicklung der modernen Medizin. Durch Grundlagenwissenschaften erzielte Erkenntnisse—wie etwa die Funktion von Fusionsproteinen als Folge von Chromosomentranslokationen, die Identifikation der für das Überleben der Tumorzelle erforderlichen molekularen Strukturen oder tumorspezifischer Oberflächenmoleküle—ermöglichen erstmals eine spezifische Behandlung der Tumorerkrankung, im Gegensatz zur klassischen Chemotherapie, die primär die ubiquitären Stoffwechselwege der Nukleinsäuresynthese und Zellteilung beeinflussen. Neben einer gesteigerten Wirksamkeit ist langfristig bei diesen Ansätzen auch ein günstigeres Nebenwirkungsprofil zu erwarten. Für diese Therapieansätze kommen neben den „kleinen Molekülen“ v. a. auch monoklonale Antikörper zum Einsatz. Aus dem breiten Spektrum an Neuerungen sollen hier einige interessante Therapiestrategien, die mittlerweile Eingang in die Klinik gefunden haben, vorgestellt werden.

Abstract

Targeted approaches to treat malignant diseases in hematology and oncology based on the molecular basis of the disease represent a major breakthrough in modern medicine. Knowledge acquired in basic sciences such as functional understanding of products generated by chromosomal translocations, definition of surface molecules or molecular requirements of tumor-cell survival allow to specifically aim at the cause of or at a requirement for malignancy. This is in sharp contrast to conventional chemotherapy which mainly influences the ubiquitous pathways of nucleic acid metabolism and cell division. In addition to superior efficacy of these approaches one should—on the long run—expect a superior profile of side effects compared to standard regimens. These “designer-approaches” are mainly based on small molecules or monoclonal antibodies. Out of the broad spectrum of current concepts we would like to summarize some of the strategies that have already found their way from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aghajanian C, Soignet S, Dizon DS et al. (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8: 2505

    PubMed  Google Scholar 

  2. Aghajanian C, Dizon D, Yan XZ et al. (2003) Phase I trial of PS-341 and carboplatin in recurrent ovarian cancer. Proc Am Soc Clin Oncol 22: 452

    Google Scholar 

  3. Albanell J, Adams J (2002) Bortezomib, a proteasome inhibitor in cancer therapy: from concept to clinic. Drugs Future 27: 1079

    CAS  Google Scholar 

  4. Blackledge G, Averbuch S (2004) Gefitinib (‚Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br J Cancer 90: 566

    Article  CAS  PubMed  Google Scholar 

  5. Baselga J, Rischin D, Ranson M et al. (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20: 4292

    Article  CAS  PubMed  Google Scholar 

  6. Büchele T (2003) Proapoptotische Therapie mit Oblimersen (bcl-2-Antisense-Oligonukleotid)—Übersicht über präklinische und klinische Daten. Onkologie 26 (Suppl): 60–69

    Article  PubMed  Google Scholar 

  7. Carpenter G (1999) Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J Cell Biol 146: 697

    Article  CAS  PubMed  Google Scholar 

  8. Ciardiello F, Caputo R, Bianco R (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6: 2053

    CAS  PubMed  Google Scholar 

  9. Ciardiello F, Caputo R, Bianco R et al. (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7: 1459

    CAS  PubMed  Google Scholar 

  10. Coiffier B, Lepage E, Briere J et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346: 235–242

    CAS  PubMed  Google Scholar 

  11. Cools J, DeAngelo DJ, Gotlib J et al. (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214

    Article  CAS  PubMed  Google Scholar 

  12. Czuczman MS, Grillo-Lopez AJ, White CA et al. (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 17: 268–276

    PubMed  Google Scholar 

  13. Czuczman M, Grillo-Lopez AJ et al. (1999) Rituximab/CHOP chemoimmunotherapy in patients with low-grade lymphomas: Progression-free survival after three years median follow-up. Blood 94: 99a

    Google Scholar 

  14. Elkin EB, Weinstein MC, Winer EP et al. (2004) HER-2 testing and trastuzumab therapy for metastatic breast cancer: A cost-effectiveness analysis. J Clin Oncol 22: 854–863

    Article  PubMed  Google Scholar 

  15. Ni H, M Ergin, Q Huang, JZ Qin et al. (2001) Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 115: 279

    Article  CAS  PubMed  Google Scholar 

  16. Esteva FJ, Valero V, Booser D et al. (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 20: 1800–1808

    CAS  PubMed  Google Scholar 

  17. Fujita E, T Mukasa, T Tsukahara et al. (1996) Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors. Biochem Biophys Res Commun 224: 74

    Article  CAS  PubMed  Google Scholar 

  18. Giaccone G, RS Herbst, C Manegold et al. (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 22: 777

    Article  PubMed  Google Scholar 

  19. Gilmore AP, AJ Valentijn, P Wang et al. (2002) Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 277: 27.643

    Article  Google Scholar 

  20. Goldberg AL, TN Akopian, AF Kisselev et al. (1997) New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378: 131

    CAS  PubMed  Google Scholar 

  21. Goldman JM, Melo JV (2003) Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med 349: 1451–1464

    Article  CAS  PubMed  Google Scholar 

  22. Heinrich MC, Blanke CD, Druker DJ, Corless CH (2002) Inhibition of KIT tyrosine kinase activity: A novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703

    Article  CAS  PubMed  Google Scholar 

  23. Herbst RS, Maddox AM, Rothenberg ML et al. (2002) Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol 20: 3815

    CAS  Google Scholar 

  24. Herbst RS, Giaccone G, Schiller JH et al. (2004) Gefitinib in combination with 4paclitaxel and carboplatin in advanced non-small lung cancer: a phase III trial—INTACT 2. J Clin Oncol 22: 785

    Article  PubMed  Google Scholar 

  25. Hideshima T, Richardson P, Chauhan D et al. (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071

    PubMed  Google Scholar 

  26. Hirata A, Ogawa S, T Kometani et al. (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554

    CAS  PubMed  Google Scholar 

  27. Hochhaus A, Berger U, Reiter A et al. (2002) Aktuelle Therapiekonzepte bei chronischer myeloischer Leukämie. Internist 43: 1228–1244

    Article  CAS  PubMed  Google Scholar 

  28. Huang SM, Li J, Armstrong EA, Harari PM (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62: 4300

    CAS  PubMed  Google Scholar 

  29. Jagannath S, Richardson P, Barlogie B et al. (2003) Phase II trials of bortezomib in combination with dexamethasone in multiple myeloma: Assessemnt of additional benefits to combination in patients with sub-optimal responses to bortezomib alone. Proc Am Soc Clin Oncol 22: 582

    Google Scholar 

  30. Janmaat ML, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8: 576

    CAS  PubMed  Google Scholar 

  31. Kneba M, Dreger P, Pantel K (Hrsg) (2001) Antikörpertherapie in der Hämatologie und Onkologie. UNI-MED, Bremen

  32. Kris MG, RB Natale, RS Herbst et al. (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290: 2149

    Article  CAS  PubMed  Google Scholar 

  33. Langer CJ (2004) Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC. Int J Radiat Oncol Biol Phys 58: 991–1002

    Article  CAS  PubMed  Google Scholar 

  34. LeBlanc R, Catley LP, Hideshima T et al. (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62: 4996

    CAS  PubMed  Google Scholar 

  35. Leyland-Jones B, Gelmon K, Ayoub JP et al. (2003) Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 21: 3965–3971

    Article  PubMed  Google Scholar 

  36. Loo TW, Clarke DM (1999) The human multidrug resistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. Faseb J 13: 1724

    CAS  PubMed  Google Scholar 

  37. Lundin J, Kimby E, Björkholm M et al. (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibiody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100: 768–773

    Article  CAS  PubMed  Google Scholar 

  38. Maloney DG, Liles TM, Czerwinski DK et al. (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lyphoma. Blood 84: 2457–2466

    CAS  PubMed  Google Scholar 

  39. Maloney DG, Grillo-Lopez AJ, White CA et al. (1997) IDEC-C2B8: (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade lyphoma. Blood 90: 2188–2195

    CAS  PubMed  Google Scholar 

  40. McLaughlin P, Grillo-Lopez AJ, Link BK et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol 16: 2825–2833

    CAS  PubMed  Google Scholar 

  41. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20 (Suppl): 1S–13S

    CAS  PubMed  Google Scholar 

  42. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19: 6550

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell BS (2003) The proteasome—an emerging therapeutic target in cancer. N Engl J Med 348: 2597

    Article  PubMed  Google Scholar 

  44. Mitsiades N, Mitsiades CS, Richardson PG et al. (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101: 2377

    Article  CAS  PubMed  Google Scholar 

  45. Mitsiades N, Mitsiades CS, Poulaki V et al. (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99: 4079

    Article  CAS  PubMed  Google Scholar 

  46. Moscatello DK, Holgado-Madruga M, Godwin AK et al. (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55: 5536

    CAS  PubMed  Google Scholar 

  47. Müller MC, Gattermann N, Lahaye T et al. (2003) Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon α/ara-C. Leukemia 17: 2392–2400

    Article  PubMed  Google Scholar 

  48. Neumeier H, K Hoar, M Pink et al. (2001) Hypoxia increases potency of the proteasome inhibitor VELCADE™ (bortezomib) for injection: potential for a hypoxic cell cytotoxin in solid tumors. EORT-NCI-Conference on Molecular Targets and Cancer Therapeutics, Frankfurt, Germany, Nov 19–22nd 2002

  49. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497

    Google Scholar 

  50. Österborg A, Dyer MJS, Bunjes D et al. (1997) Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. J Clin Oncol 15: 1567–1574

    CAS  PubMed  Google Scholar 

  51. Orlowski RZ, Stinchcombe TE, Mitchell BS et al. (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20: 4420

    Article  PubMed  Google Scholar 

  52. Orlowski RZ, Voorhees PM, Garcia RA et al. (2003) Phase I study of the proteasome inhibitior bortezomib and pegylated liposomal doxorubicin in patients with refractory hematologic malignancies. Proc Am Soc Clin Oncol 22: 200

    Google Scholar 

  53. Paschka P, Müller MC, Merx K et al. (2003) Molecular monitoring of response to imatinib (Glivec ) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia 17: 1687–1694

    Article  CAS  PubMed  Google Scholar 

  54. Perez EA, Rodeheffer R (2004) Clinical cardiac tolerability of trastuzumab. J Clin Oncol 22: 322–329

    Article  PubMed  Google Scholar 

  55. Press OW, Leonard JP, Coiffier B et al. (2001) Immunotherapy of Non-Hodgkin’s lymphomas. Hematology (Am Soc Hematol Educ Program): 221–240

  56. Ranson M, Hammond LA, Ferry D et al. (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20: 2240

    CAS  Google Scholar 

  57. Richardson PG, Barlogie B, Berenson J et al. (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609

    Article  CAS  PubMed  Google Scholar 

  58. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293

    Google Scholar 

  59. Rundbrief des Kompetenznetzes Leukämien, Nr. 5, Januar 2003

  60. Saltz LB, Meropol NJ, Loehrer PJ et al. (2004) Phase II trial of cetuximab in patints with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22: 1201–1208

    Article  PubMed  Google Scholar 

  61. Schulz H, Winkler U, Staak JO, Engert A (2000) The monoclonal antibodies Campath-1H and rituximab in the therapy of chronic lymphocytic leukemia. Onkologie 23: 526–532

    Article  PubMed  Google Scholar 

  62. Seidman A, Hudis C, Pierri MK et al. (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20: 1215–1221

    Article  CAS  PubMed  Google Scholar 

  63. Sibilia M, Boniotti MB, Angoscini P et al. (1995) Two independent pathways of expression lead to self-assembly of the rabbit hemorrhagic disease virus capsid protein. J Virol 69: 5812

    CAS  PubMed  Google Scholar 

  64. Sirotnak FM, Zakowski MF, Miller VA et al. (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 6: 4885

    CAS  PubMed  Google Scholar 

  65. Teicher BA, Ara G, Herbst R et al. (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5: 2638

    CAS  PubMed  Google Scholar 

  66. Troyer KL, Lee DC (2001) Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J Mammary Gland Biol Neoplasia 6: 7

    Article  CAS  PubMed  Google Scholar 

  67. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9: 6316

    CAS  PubMed  Google Scholar 

  68. Wakeling AE, Guy SP, Woodburn JR et al. (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62: 5749

    CAS  PubMed  Google Scholar 

  69. Williams KJ, Telfer BA, Stratford IJ, Wedge SR (2002) ZD1839 (‚Iressa‘), a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model. Br J Cancer 86: 1157

    Article  CAS  PubMed  Google Scholar 

  70. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127

    Article  CAS  PubMed  Google Scholar 

  71. Zangari M, Barlogie B, Prather J et al. (2002) Marked activity also in del 13 multiple myeloma of PS 341 and subsequent thalidomide in a setting of resistance to post-autotransplant salvage therapies. Blood 100: 105a

    Article  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kneba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, C., Kneba, M. Designermedikamente in der Tumortherapie. Internist 45 (Suppl 1), S38–S47 (2004). https://doi.org/10.1007/s00108-004-1223-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-004-1223-6

Schlüsselwörter

Keywords

Navigation