Skip to main content
Log in

Kardiorespiratorische Effekte perioperativer Positionierungsmaßnahmen

Cardiorespiratory effects of perioperative positioning techniques

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Rückenlage ist nach wie vor die am häufigsten praktizierte Form der intraoperativen Positionierung von Patienten. Positionierungsformen, abweichend von der Rückenlage, führen zu ausgeprägten physiologischen Veränderungen, die den Narkose- und Operationsablauf beeinflussen. Die Homöostase des Patienten wird beeinflusst durch Volumenverschiebungen in die (dann) abhängigen Körperpartien (aufrechtsitzende Positionen, aber auch Trendelenburg-Positionierung [TBP]) sowie durch ein Tiefertreten des Zwerchfells mit reduzierten Lungenvolumina und verminderter Compliance bei allen Formen der Oberkörpertieflage. Oberkörperhochlagen („beach chair position“) sind charakterisiert durch eine relative Hypovolämie, mit Abfall des mittleren arteriellen Blutdrucks, des Herzzeit- und des Schlagvolumens, während die pulmonalen Funktionen unbeeinflusst bleiben. Gravierende Komplikationen (postoperative Apoplexie) sind beschrieben. Pathophysiologische Grundlagen und Auswirkungen der hämodynamischen Veränderungen werden im vorliegenden Leitthemenbeitrag dargestellt, potenzielle Vermeidungsstrategien diskutiert. Oberkörpertieflagen bewirken dagegen einen, in der Mehrzahl der Fälle gut tolerierten, Anstieg des kardialen Preload. Die TBP hat aber – insbesondere in Kombination mit einem Kapnoperitoneum – negative Auswirkungen auf die Lungenfunktion, möglicherweise auf den intrakraniellen Druck und ggf. auch auf die Durchblutung intraabdomineller Organe. Die Pathophysiologie der intraoperativen TBP wird skizziert; Lösungsansätze zur Vermeidung von Komplikationen werden angesprochen. Bauch- und Seitenlagen beeinflussen die Homöostase dagegen wenig, auf die Besonderheiten der 15°-Linksseiten-Lage von Gebärenden wird in einem gesonderten Abschnitt eingegangen.

Abstract

The supine position is still the most frequently used type of positioning during surgical procedures. Positions other than the supine position lead to physiological alterations that have a relevant influence on the course of anesthesia and surgery. As a matter of principle, hemodynamic stability is at risk because venous blood is pooled in the lower positioned body parts. In addition, head down positions (Trendelenburg position) may lead to an impairment of respiratory function by reducing lung volumes as well as lung compliance. Upright positions (beach chair position) are characterized by a relative hypovolemia accompanied by a reduction of mean arterial pressure, cardiac output and stroke volume, whereas pulmonary functions remain unchanged. Some severe adverse events have been described in the literature (e.g. intraoperative apoplexy, postoperative blindness). The pathophysiological principles and effects of hemodynamic alterations as well as potential strategies to avoid complications are presented and discussed in this lead article. Head down positions, especially the Trendelenburg position, cause a relative (intrathoracic) hypervolemia and an increase in cardiac preload that is usually well-tolerated in patients without heart problems; however, the Trendelenburg position, especially if combined with a capnoperitoneum, significantly impairs pulmonary function, can have a negative effect on intracerebral pressure and may reduce blood flow of intra-abdominal organs. The pathophysiological intraoperative changes caused by Trendelenburg positioning are described and approaches suitable for risk reduction are discussed. The prone position and lateral decubitus position have little influence on the intraoperative homeostasis. Nevertheless, there is an ongoing discussion concerning the efficacy of a 15° left lateral position during caesarean section, which is also discussed in a separate section of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ARDS:

„Acute respiratory distress syndrome“ (akutes Atemnotsyndrom)

BCP:

„Beach chair position“

CBF:

„Cerebral blood flow“ (zerebraler Blutfluss)

CI:

„Cardiac index“ (Herzindex)

CPP:

„Cerebral perfusion pressure“ (zerebraler Perfusionsdruck)

CVR:

„Cerebral vascular resistance“ (intrazerebraler Gefäßwiderstand)

FEV1 :

Forcierte exspiratorische Einsekundenkapazität

FIO2 :

Inspiratorische Sauerstofffraktion

FRC:

„Functional residual capacity“ (funktionelle Residualkapazität)

FVC:

„Forced vital capacity“ (forcierte Vitalkapazität)

HZV:

Herzzeitvolumen

ICP:

„Intracranial pressure“ (intrakranieller Druck)

MAD:

Mittlerer arterieller Druck

NIRS:

Nahinfrarotspektroskopie

paO2 :

Arterieller Sauerstoffpartialdruck

paCO2 :

Arterieller Kohlenstoffdioxidpartialdruck

petCO2 :

Endexspiratorischer Kohlenstoffdioxidpartialdruck

PEEP:

„Positive endexpiratory pressure“ (positiver endexspiratorischer Druck)

RL:

Rückenlage

rSO2 :

Regionale zerebrale Sauerstoffsättigung

SV:

Schlagvolumen

SVI:

Schlagvolumenindex

SVR:

„Systemic vascular resistance“ (systemvaskulärer Gefäßwiderstand)

SVV:

Schlagvolumenvariation

TBP:

Trendelenburg-Position

ZVD:

Zentraler Venendruck

Literatur

  1. Deutsche Gesellschaft für Gynäkologie und Geburtshilfe e.V. (DGGG) (2015) Lagerungsbedingte Schäden in der operativen Gynäkologie, Empfehlungen zur Verhinderung. https://www.awmf.org/leitlinien/detail/ll/015-077.html. Zugegriffen: 5. Mai 2019

    Google Scholar 

  2. Bhatti MT, Enneking FK (2003) Visual loss and ophthalmoplegia after shoulder surgery. Anesth Analg 96:899–902

    Article  Google Scholar 

  3. Bijker JB, Persoon S, Peelen LM et al (2012) Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study. Anesthesiology 116:658–664

    Article  Google Scholar 

  4. Buhre W, Weyland A, Buhre K et al (2000) Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures. Br J Anaesth 84:354–357

    Article  CAS  Google Scholar 

  5. Chin JH, Seo H, Lee EH et al (2015) Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position. BMC Anesthesiol 15:43

    Article  Google Scholar 

  6. Closhen D, Treiber AH, Berres M et al (2014) Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: a clinical observational study. Eur J Anaesthesiol 31:104–109

    Article  Google Scholar 

  7. Danic MJ, Chow M, Alexander G et al (2007) Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases. J Robot Surg 1:119–123

    Article  Google Scholar 

  8. Doe A, Kumagai M, Tamura Y et al (2016) A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy. J Anesth 30:949–955

    Article  Google Scholar 

  9. Falabella A, Moore-Jeffries E, Sullivan MJ et al (2007) Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Robot 3:312–315

    Article  Google Scholar 

  10. Frey K, Rehm M, Chappell D et al (2018) Preemptive volume therapy to prevent hemodynamic changes caused by the beach chair position: hydroxyethyl starch 130/0.4 versus Ringer’s acetate—a controlled randomized trial. J Shoulder Elbow Surg 27:2129–2138

    Article  Google Scholar 

  11. Friedman DJ, Parnes NZ, Zimmer Z et al (2009) Prevalence of cerebrovascular events during shoulder surgery and association with patient position. Orthopedics 32(4):256

    Google Scholar 

  12. Gainsburg DM (2012) Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol 78:596–604

    CAS  PubMed  Google Scholar 

  13. Higuchi H, Takagi S, Zhang K et al (2015) Effect of lateral tilt angle on the volume of the abdominal aorta and inferior vena cava in pregnant and nonpregnant women determined by magnetic resonance imaging. Anesthesiology 122:286–293

    Article  Google Scholar 

  14. Hirvonen EA, Nuutinen LS, Kauko M (1995) Hemodynamic changes due to Trendelenburg positioning and pneumoperitoneum during laparoscopic hysterectomy. Acta Anaesthesiol Scand 39:949–955

    Article  CAS  Google Scholar 

  15. Hofer C, Senn A, Weibel L et al (2008) Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac™ and PiCCOplus™ system. Crit Care 12:R82

    Article  Google Scholar 

  16. Huber W, Zanner R, Schneider G et al (2019) Assessment of regional perfusion and organ function: less and non-invasive techniques. https://www.frontiersin.org/articles/10.3389/fmed.2019.00050/full. Zugegriffen: 1. Juni 2019

    Google Scholar 

  17. Jo YY, Jung WS, Kim HS et al (2014) Prediction of hypotension in the beach chair position during shoulder arthroscopy using pre-operative hemodynamic variables. J Clin Monit Comput 28:173–178

    Article  Google Scholar 

  18. Jones SJ, Kinsella SM, Donald FA (2003) Comparison of measured and estimated angles of table tilt at Caesarean section. Br J Anaesth 90:86–87

    Article  CAS  Google Scholar 

  19. Kalmar AF, Foubert L, Hendrickx JF et al (2010) Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth 104:433–439

    Article  CAS  Google Scholar 

  20. Katz S, Arish N, Rokach A et al (2018) The effect of body position on pulmonary function: a systematic review. BMC Pulm Med 18:159–174

    Article  Google Scholar 

  21. Kim SJ, Kwon JY, Cho AR et al (2011) The effects of sevoflurane and propofol anesthesia on cerebral oxygenation in gynecological laparoscopic surgery. Korean J Anesthesiol 61:225–232

    Article  CAS  Google Scholar 

  22. Kim WH, Hahm TS, Kim JA et al (2013) Prolonged inspiratory time produces better gas exchange in patients undergoing laparoscopic surgery: a randomised trial. Acta Anaesthesiol Scand 57:613–622

    Article  CAS  Google Scholar 

  23. Koh JL, Levin SD, Chehab EL et al (2013) Neer Award 2012: cerebral oxygenation in the beach chair position: a prospective study on the effect of general anesthesia compared with regional anesthesia and sedation. J Shoulder Elbow Surg 22:1325–1331

    Article  Google Scholar 

  24. Laux G (2004) Lungenphysiologie und Beatmung in Narkose. In: Roissant R, Werner C, Zwißler B (Hrsg) Die Anästhesiologie. Springer, Berlin, S 582–595

    Google Scholar 

  25. Lee AJ, Landau R (2017) Aortocaval compression syndrome: time to revisit certain dogmas. Anesth Analg 125:1975–1985

    Article  Google Scholar 

  26. Lee AJ, Landau R, Mattingly JL et al (2017) Left lateral table tilt for elective cesarean delivery under spinal anesthesia has no effect on neonatal acid-base status: a randomized controlled trial. Anesthesiology 127:241–249

    Article  Google Scholar 

  27. Lee HJ, Kim KS, Jeong JS et al (2013) Optimal positive end-expiratory pressure during robot-assisted laparoscopic radical prostatectomy. Korean J Anesthesiol 65:244–250

    Article  Google Scholar 

  28. Lee JR, Lee PB, Do SH et al (2006) The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res 34:531–536

    Article  CAS  Google Scholar 

  29. Montgomery LD, Hanish HM, Marker RA (1989) An impedance device for study of multisegment hemodynamic changes during orthostatic stress. Aviat Space Environ Med 60:1116–1122

    CAS  PubMed  Google Scholar 

  30. Moon HS, Lee SK, Choi YS et al (2011) The effect of nitroglycerin on hemodynamic changes during laparoscopic low anterior resection. Korean J Anesthesiol 61:388–393

    Article  CAS  Google Scholar 

  31. Palermo P, Cattadori G, Bussotti M et al (2005) Lateral decubitus position generates discomfort and worsens lung function in chronic heart failure. Chest 128:1511–1516

    Article  Google Scholar 

  32. Papadonikolakis A, Wiesler ER, Olympio MA et al (2008) Avoiding catastrophic complications of stroke and death related to shoulder surgery in the sitting position. Arthroscopy 24:481–482

    Article  Google Scholar 

  33. Pelosi P, Croci M, Calappi E et al (1995) The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg 80:955–960

    CAS  PubMed  Google Scholar 

  34. Picton P, Dering A, Alexander A et al (2015) Influence of ventilation strategies and anesthetic techniques on regional cerebral oximetry in the beach chair position: a prospective interventional study with a randomized comparison of two anesthetics. Anesthesiology 123:765–774

    Article  CAS  Google Scholar 

  35. Pohl A, Cullen DJ (2005) Cerebral ischemia during shoulder surgery in the upright position: a case series. J Clin Anesth 17:463–469

    Article  Google Scholar 

  36. Suh MK, Seong KW, Jung SH et al (2010) The effect of pneumoperitoneum and Trendelenburg position on respiratory mechanics during pelviscopic surgery. Korean J Anesthesiol 59:329–334

    Article  Google Scholar 

  37. National Institute for Health and Care Excellence (2019) Caesarean section. https://www.nice.org.uk/guidance/cg132. Zugegriffen: 6. Mai 2019

    Google Scholar 

  38. Tsai SE, Yeh PH, Hsu PK et al (2019) Continuous haemodynamic effects of left tilting and supine positions during Caesarean section under spinal anaesthesia with a noninvasive cardiac output monitor system. Eur J Anaesthesiol 36:72–75

    Article  Google Scholar 

  39. Valenza F, Vagginelli F, Tiby A et al (2007) Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis. Anesthesiology 107:725–732

    Article  Google Scholar 

  40. Yokoyama M, Ueda W, Hirakawa M et al (1991) Hemodynamic effect of the prone position during anesthesia. Acta Anaesthesiol Scand 35:741–744

    Article  CAS  Google Scholar 

  41. Zarif P, Mahmoud AAA, Abdelhaq MM et al (2016) Dexmedetomidine versus magnesium sulfate as adjunct during anesthesia for laparoscopic colectomy. Anesthesiol Res Pract. https://doi.org/10.1155/2016/7172920

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hofmann-Kiefer.

Ethics declarations

Interessenkonflikt

C. Zeuzem-Lampert, P. Groene, V. Brummer und K. Hofmann-Kiefer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeuzem-Lampert, C., Groene, P., Brummer, V. et al. Kardiorespiratorische Effekte perioperativer Positionierungsmaßnahmen. Anaesthesist 68, 805–813 (2019). https://doi.org/10.1007/s00101-019-00674-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-019-00674-9

Schlüsselwörter

Keywords

Navigation