Skip to main content
Log in

β1-Blocker improves survival and ventricular remodelling in rats with lethal crush injury

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Background

Crush injury/crush syndrome (CI/CS) is the second most common cause of death during earthquakes. Most studies of CI/CS have mainly focused on kidney injury after decompression. Few studies have focused on myocardial injury caused by crush injury and its potential mechanisms.

Methods

We first verified cardiomyocyte injury during compression in rats with a crush injury. The survival rate, electrocardiographic results, histological results, catecholamine changes and cardiac β1-AR expression were evaluated. Next, we explored the effects of pretreatment with a selective β1-blocker (bisoprolol) with or without fluid resuscitation on rats with a crush injury. In addition to evaluating the survival rates, biochemical and histological analyses and echocardiographic measurements were also performed.

Results

Reduced heart rates, elevated ST segments, and tall-peaked T waves were observed in the rats with a crush injury. The changes in the myocardial enzymes and pathological results demonstrated that myocardial damage occurred during compression in rats with a crush injury. The levels of the catecholamine norepinephrine in both the serum and myocardial tissue were elevated during compression. Pretreatment with a selective β1-blocker combined with fluid resuscitation significantly improved the survival rates of the rats with lethal crush injury. The myocardial enzymes and pathological results showed that the combined therapy decreased myocardial damage. The echocardiography measurements showed that the rats that received the combined therapy exhibited decreased left ventricular mass (LVM), left ventricular volume at end-systole (LVVs) and left ventricular internal diameter (LVID) compared with the rats with a crush injury.

Conclusions

Our findings demonstrated the presence of myocardial injury in the early stage of compression in rats with a crush injury. Pretreatment with a β1-blocker (bisoprolol) with fluid resuscitation significantly reduced mortality, decreased myocardial tissue damage, and improved ventricular remodelling in rats with a lethal crush injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Speck K, Schneider BS, Deashinta N. A rodent model to advance the field treatment of crush muscle injury during earthquakes and other natural disasters. Biol Res Nurs. 2013;15(1):17–25. https://doi.org/10.1177/1099800411414698.

    Article  PubMed  Google Scholar 

  2. Sever MS, Vanholder R. Crush syndrome: a case report and review of the literature. J Emerg Med. 2015;48(6):730–1. https://doi.org/10.1016/j.jemermed.2014.07.063.

    Article  PubMed  Google Scholar 

  3. Sever MS, Vanholder R. Management of crush syndrome casualties after disasters. Rambam Maimonides Med J. 2011;2(2):e0039. https://doi.org/10.5041/RMMJ.10039.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang BF, Wang PF, Cong YX, Lei JL, Wang H, Huang H, et al. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-alpha and c-Jun N-terminal kinase pathway. J Orthop Surg Res. 2017;12(1):110. https://doi.org/10.1186/s13018-017-0614-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chavez LO, Leon M, Einav S, Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016;20(1):135. https://doi.org/10.1186/s13054-016-1314-5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Fu P, Wang L, Cai G, Zhang L, Chen D, et al. The clinical features and outcome of crush patients with acute kidney injury after the Wenchuan earthquake: differences between elderly and younger adults. Injury. 2012;43(9):1470–5. https://doi.org/10.1016/j.injury.2010.11.036.

    Article  PubMed  Google Scholar 

  7. Guo X, Wang D, Liu Z. Electrocardiographic changes after injury in a rat model of combined crush injury. Am J Emerg Med. 2013;31(12):1661–5. https://doi.org/10.1016/j.ajem.2013.08.054.

    Article  PubMed  Google Scholar 

  8. Liu S, Yu Y, Luo B, Liao X, Tan Z. Impact of traumatic muscle crush injury as a cause of cardiomyocyte-specific injury: an experimental study. Heart Lung Circ. 2013;22(4):284–90. https://doi.org/10.1016/j.hlc.2012.11.008.

    Article  PubMed  Google Scholar 

  9. Rajagopalan S. Crush injuries and the crush syndrome. Med J Armed Forces India. 2010;66(4):317–20. https://doi.org/10.1016/S0377-1237(10)80007-3.

    Article  CAS  PubMed  Google Scholar 

  10. Loftus TJ, Efron PA, Moldawer LL, Mohr AM. Beta-blockade use for traumatic injuries and immunomodulation: a review of proposed mechanisms and clinical evidence. Shock. 2016;46(4):341–51. https://doi.org/10.1097/SHK.0000000000000636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res. 2013;113(6):739–53. https://doi.org/10.1161/CIRCRESAHA.113.300308.

    Article  CAS  PubMed  Google Scholar 

  12. Samson R, Baydoun H, Jaiswal A, Le Jemtel TH. Cardiac adrenergic nervous system and left ventricular remodeling. Am J Med Sci. 2015;350(4):321–6. https://doi.org/10.1097/MAJ.0000000000000549.

    Article  PubMed  Google Scholar 

  13. Morey TE, Modell JH, Shekhawat D, Grand T, Shah DO, Gravenstein N, et al. Preparation and anesthetic properties of propofol microemulsions in rats. Anesthesiology. 2006;104(6):1184–90. https://doi.org/10.1097/00000542-200606000-00013.

    Article  CAS  PubMed  Google Scholar 

  14. Hu C, Flecknell PA, Liles JH. Fentanyl and medetomidine anaesthesia in the rat and its reversal using atipamazole and either nalbuphine or butorphanol. Lab Anim. 1992;26(1):15–22. https://doi.org/10.1258/002367792780809075.

    Article  CAS  PubMed  Google Scholar 

  15. Nakayama T, Fujita M, Ishihara M, Ishihara M, Ogata S, Yamamoto Y, et al. Improved survival rate by temperature control at compression sites in rat model of crush syndrome. J Surg Res. 2014;188(1):250–9. https://doi.org/10.1016/j.jss.2013.12.012.

    Article  PubMed  Google Scholar 

  16. Huang J, Ma WZ. Studies on mechanism of myocardial injury induced by adrenergic alpha receptors and catecholamines. Chin J Pathophysiol. 1990;6(5):313–6.

    Google Scholar 

  17. Debelle FD, Nortier JL, De Prez EG, Garbar CH, Vienne AR, Salmon IJ, et al. Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. J Am Soc Nephrol. 2002;13(2):431–6.

    Article  CAS  PubMed  Google Scholar 

  18. Smith KM, Mrozek JD, Simonton SC, Bing DR, Meyers PA, Connett JE, et al. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Crit Care Med. 1997;25(11):1888–97.

    Article  CAS  PubMed  Google Scholar 

  19. Takikawa M, Nakamura S, Ishihara M, Takabayashi Y, Fujita M, Hattori H, et al. Improved angiogenesis and healing in crush syndrome by fibroblast growth factor-2-containing low-molecular-weight heparin (Fragmin)/protamine nanoparticles. J Surg Res. 2015;196(2):247–57. https://doi.org/10.1016/j.jss.2015.03.022.

    Article  CAS  PubMed  Google Scholar 

  20. Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckardt L, Tiemann K. Echocardiographic assessment of global left ventricular function in mice. Lab Anim. 2009;43(2):127–37. https://doi.org/10.1258/la.2007.06001e.

    Article  CAS  PubMed  Google Scholar 

  21. Aoki T, Takahashi J, Fukumoto Y, Yasuda S, Ito K, Miyata S, et al. Effect of the Great East Japan Earthquake on cardiovascular diseases—report from the 10 hospitals in the disaster area. Circ J. 2013;77(2):490–3. https://doi.org/10.1253/circj.cj-12-1594.

    Article  PubMed  Google Scholar 

  22. Adachi K, Kawata M, Araki S, Matsumoto A, Mukai T, Ikoma T. A case of crush syndrome with giant negative T waves and reversible left ventricular dysfunction. Jpn Circ J. 1996;60(10):809–14.

    Article  CAS  PubMed  Google Scholar 

  23. Allister C. Cardiac arrest after crush injury. Br Med J (Clin Res Ed). 1983;287(6391):531–2. https://doi.org/10.1136/bmj.287.6391.531-a.

    Article  CAS  Google Scholar 

  24. Better OS, Abassi Z, Rubinstein I, Marom S, Winaver Y, Silberman M. The mechanism of muscle injury in the crush syndrome: ischemic versus pressure-stretch myopathy. Miner Electrolyte Metab. 1990;16(4):181.

    CAS  PubMed  Google Scholar 

  25. Szardien S, Mollmann H, Willmer M, Akashi YJ, Hamm CW, Nef HM. Mechanisms of stress (takotsubo) cardiomyopathy. Heart Fail Clin. 2013;9(2):197–205, ix. https://doi.org/10.1016/j.hfc.2012.12.012.

  26. Bybee KA, Prasad A. Stress-related cardiomyopathy syndromes. Circulation. 2008;118(4):397–409. https://doi.org/10.1161/CIRCULATIONAHA.106.677625.

    Article  PubMed  Google Scholar 

  27. Han X. Restraint stress aggravates rat heart injury caused by a crush injury through endoplasmic reticulum stress. Shijiazhuang: Hebei Medical University; 2013.

    Google Scholar 

  28. Geng J, Zhang XJ, Ma CL, Li YM, Zhang GZ, Ma RF, et al. Restraint stress aggravates rat kidney injury caused by a crush injury through endoplasmic reticulum stress. J Trauma Acute Care Surg. 2013;75(5):798–806. https://doi.org/10.1097/TA.0b013e3182a685ff.

    Article  PubMed  Google Scholar 

  29. Myslivecek J, Ricny J, Palkovits M, Kvetnansky R. The effects of short-term immobilization stress on muscarinic receptors, beta-adrenoceptors, and adenylyl cyclase in different heart regions. Ann N Y Acad Sci. 2004;1018:315–22. https://doi.org/10.1196/annals.1296.038.

    Article  CAS  PubMed  Google Scholar 

  30. Qi Y. Cardiac sympathetic nerve norepinephrine transporter and β-adrenergic receptor internalization of rat under immobilization. Shijiazhuang: Hebei Medical University; 2016.

    Google Scholar 

  31. Bondarenko VE. A compartmentalized mathematical model of the beta1-adrenergic signaling system in mouse ventricular myocytes. PLoS ONE. 2014;9(2):e89113. https://doi.org/10.1371/journal.pone.0089113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J. Heart ventricles specific stress-induced changes in beta-adrenoceptors and muscarinic receptors. Gen Physiol Biophys. 2014;33(3):357–64. https://doi.org/10.4149/gpb_2014002.

    Article  CAS  PubMed  Google Scholar 

  33. Use ABT. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS Investigators and Committees. Circulation. 1994;90(4):1765–73.

    Article  Google Scholar 

  34. Ueyama T, Kasamatsu K, Hano T, Yamamoto K, Tsuruo Y, Nishio I. Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors: a possible animal model of ‘tako-tsubo’ cardiomyopathy. Circ J. 2002;66(7):712–3.

    Article  PubMed  Google Scholar 

  35. Murata I, Ooi K, Shoji S, Motohashi Y, Kan M, Ohtake K, et al. Acute lethal crush-injured rats can be successfully rescued by a single injection of high-dose dexamethasone through a pathway involving PI3K-Akt-eNOS signaling. J Trauma Acute Care Surg. 2013;75(2):241–9. https://doi.org/10.1097/TA.0b013e3182905f11.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi J, Murata I. Nitrite as a pharmacological intervention for the successful treatment of crush syndrome. Physiol Rep. 2018. https://doi.org/10.14814/phy2.13633.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murata I, Nozaki R, Ooi K, Ohtake K, Kimura S, Ueda H, et al. Nitrite reduces ischemia/reperfusion-induced muscle damage and improves survival rates in rat crush injury model. J Trauma Acute Care Surg. 2012;72(6):1548–54. https://doi.org/10.1097/TA.0b013e31824a76b5.

    Article  CAS  PubMed  Google Scholar 

  38. Cuong NT, Abe C, Binh NH, Hara A, Morita H, Ogura S. Sivelestat improves outcome of crush injury by inhibiting high-mobility group box 1 in rats. Shock. 2013;39(1):89–95. https://doi.org/10.1097/SHK.0b013e31827a2412.

    Article  CAS  PubMed  Google Scholar 

  39. Shimazaki J, Matsumoto N, Ogura H, Muroya T, Kuwagata Y, Nakagawa J, et al. Systemic involvement of high-mobility group box 1 protein and therapeutic effect of anti-high-mobility group box 1 protein antibody in a rat model of crush injury. Shock. 2012;37(6):634–8. https://doi.org/10.1097/SHK.0b013e31824ed6b7.

    Article  CAS  PubMed  Google Scholar 

  40. Garcha AS, Cohen DL. Catecholamine excess: pseudopheochromocytoma and beyond. Adv Chronic Kidney Dis. 2015;22(3):218–23.

    Article  PubMed  Google Scholar 

  41. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43. https://doi.org/10.1016/S0140-6736(14)60107-0.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Herum KM, Lunde IG, McCulloch AD, Christensen G. The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med. 2017. https://doi.org/10.3390/jcm6050053.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74. https://doi.org/10.1007/s00018-013-1349-6.

    Article  CAS  PubMed  Google Scholar 

  44. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87(4):1285–342. https://doi.org/10.1152/physrev.00012.2007.

    Article  CAS  PubMed  Google Scholar 

  45. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114(1):32–9. https://doi.org/10.1161/CIRCULATIONAHA.106.613414.

    Article  PubMed  Google Scholar 

  47. Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol. 2011;58(12):1271–9.

    Article  PubMed  Google Scholar 

  48. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57(7):821–8. https://doi.org/10.1016/j.jacc.2010.06.062.

    Article  PubMed  Google Scholar 

  49. Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60.

    Article  CAS  PubMed  Google Scholar 

  50. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation. 2000;101(17):2103–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bonnefont-Rousselot D, Mahmoudi A, Mougenot N, Varoquaux O, Le Nahour G, Fouret P, et al. Catecholamine effects on cardiac remodelling, oxidative stress and fibrosis in experimental heart failure. Redox Rep. 2002;7(3):145–51. https://doi.org/10.1179/135100002125000389.

    Article  CAS  PubMed  Google Scholar 

  52. Watanabe K, Ohta Y, Inoue M, Ma M, Wahed MI, Nakazawa M, et al. Bisoprolol improves survival in rats with heart failure. J Cardiovasc Pharmacol. 2001;38(Suppl 1):S55–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kadioglu E, Teksen Y, Kocak C, Kocak FE. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg. 2019. https://doi.org/10.1007/s00068-019-01216-z.

    Article  PubMed  Google Scholar 

  54. Nishikata R, Kato N, Hiraiwa K. Oxidative stress may be involved in distant organ failure in tourniquet shock model mice. Leg Med (Tokyo). 2014;16(2):70–5. https://doi.org/10.1016/j.legalmed.2013.11.004.

    Article  CAS  Google Scholar 

  55. Matsumoto H, Matsumoto N, Shimazaki J, Nakagawa J, Imamura Y, Yamakawa K, et al. Therapeutic effectiveness of anti-RAGE antibody administration in a rat model of crush injury. Sci Rep. 2017;7(1):12255. https://doi.org/10.1038/s41598-017-12065-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the personnel of the Institute of Disaster Medicine of Tianjin University for support and assistance.

Funding

This work was supported by National Key Research and Development Program (2018YFC1504402, 2016YFC0802806), Tianjin University Independent Innovation Fund (2019XZS-0021).

Author information

Authors and Affiliations

Author notes

  1. Prof. Shike Hou takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

    Authors

    Corresponding author

    Correspondence to Shike Hou.

    Ethics declarations

    Conflict of interest

    The authors declare that they have no conflict of interest.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Yu, M., Lv, Q., Shi, J. et al. β1-Blocker improves survival and ventricular remodelling in rats with lethal crush injury. Eur J Trauma Emerg Surg 48, 455–470 (2022). https://doi.org/10.1007/s00068-020-01408-y

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00068-020-01408-y

    Keywords

    Navigation