Skip to main content

Advertisement

Log in

Vitexin enhances radiosensitivity of mouse subcutaneous xenograft glioma by affecting the miR-17-5p/miR-130b-3p/PTEN/HIF-1α pathway

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Vitexin can cooperate with hyperbaric oxygen to sensitize the radiotherapy of glioma by inhibiting the hypoxia-inducible factor (HIF)-1α. However, whether vitexin has a direct radiosensitization and how it affects the HIF-1α expression remain unclear. This study investigated these issues.

Methods

The SU3 cells-inoculated nude mice were divided into control, radiation, and vitexin + radiation groups. The vitexin + radiation-treated mice were intraperitoneally injected with 75 mg/kg vitexin daily for 21 days. On the 3rd, 10th, and 17th days during the vitexin treatment, the radiation-treated mice were locally irradiated with 10 Gy, respectively. In vitro, the microRNA (miR)-17-5p or miR-130b-3p mimics-transfected SU3 cells were used to examine the effects of vitexin plus radiation on expression of miR-17-5p- or miR-130b-3p-induced radioresistance-related pathway proteins. The effects of vitexin on miR-17-5p and miR-130b-3p expression in SU3 cells were also evaluated.

Results

Compared with the radiation group, the tumor volume, tumor weight, and expression of HIF-1α, vascular endothelial growth factor, and glucose transporter-1/3 proteins, miR-17-5p, and miR-130b-3p in tumor tissues in the vitexin + radiation group decreased, whereas the expression of phosphatase and tensin homolog (PTEN) protein increased. After treatment of miR-17-5p or miR-130b-3p mimics-transfected SU3 cells with vitexin plus radiation, the PTEN protein expression also increased, the HIF-1α protein expression decreased correspondingly. Moreover, vitexin decreased the miR-17-5p and miR-130b-3p expression in SU3 cells.

Conclusion

Vitexin can enhance the radiosensitivity of glioma, and its mechanism may partly be related to the attenuation of HIF-1α pathway after lowering the inhibitory effect of miR-17-5p and miR-130b-3p on PTEN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Farooqi A, Li J, de Groot J, Yeboa DN (2020) Current role of radiation therapy in the management of malignant central nervous system tumors. Hematol Oncol Clin N. Am, vol 34, pp 13–28

    Google Scholar 

  2. Han XT, Xue XY, Zhou HD, Zhang G (2017) A molecular view of the radioresistance of gliomas. Oncotarget 8:100931–100941

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abadi AJ, Zarrabi A, Gholami MH, Mirzaei S, Hashemi F, Zabolian A, Entezari M, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP (2021) Small in size, but large in action: microRNAs as potential modulators of PTEN in breast and lung cancers. Biomolecules 11:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu JR, Ke F, Chen TT, Zhou Q, Weng LL, Tan JN, Shen WX, Li L, Zhou JY, Xu CL, Cheng HB, Zhou JR (2020) MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: a systematic review. J Cancer Res Clin 146:809–820

    Article  CAS  Google Scholar 

  5. He ZP, Chen AY, Rojanasakul Y, Rankin GO, Chen YC (2016) Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF‑1 alpha/VEGF signaling pathway in ovarian cancer cells. Oncol Rep 35:291–297

    Article  CAS  PubMed  Google Scholar 

  6. Shen W, Li HL, Liu L, Cheng JX (2017) Expression levels of PTEN, HIF‑1 alpha, and VEGF as prognostic factors in ovarian cancer. Eur Rev Med Pharmaco 21:2596–2603

    CAS  Google Scholar 

  7. Zhou XG, Liu HH, Zheng YH, Han YB, Wang TT, Zhang H, Sun Q, Li Z (2020) Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF‑1 inhibitor. Acs Appl Mater Inter 12:4231–4240

    Article  CAS  Google Scholar 

  8. Luo ZH, Bai MH, Xiao X, Zhang W, Liu XD, Yang XL, Li SZ, Huan Y, Wu ZQ, Zhang X, Cao WD (2015) Silencing of HIF‑1 alpha enhances the radiation sensitivity of human glioma growth in vitro and in vivo. Neuropharmacology 89:168–174

    Article  CAS  PubMed  Google Scholar 

  9. He M, Min JW, Kong WL, He XH, Li JX, Peng BW (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85

    Article  CAS  PubMed  Google Scholar 

  10. Xie T, Wang JR, Dai CG, Fu XA, Dong J, Huang Q (2020) Vitexin, an inhibitor of hypoxia-inducible factor-1α, enhances the radiotherapy sensitization of hyperbaric oxygen on glioma. Clin Transl Oncol 22:1086–1093

    Article  CAS  PubMed  Google Scholar 

  11. Adinew GM, Taka E, Mendonca P, Messeha SS, Soliman KFA (2021) The anticancer effects of flavonoids through miRNAs modulations in triple-negative breast cancer. Nutrients 13:1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu XL, Cao Y, Tang L, Yang YC, Chen F, Xia JY (2018) Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1‑N. J Cell Biochem 119:6842–6856

    Article  CAS  PubMed  Google Scholar 

  13. Wan Y, Fei XF, Wang ZM, Jiang DY, Chen HC, Yang J, Shi L, Huang Q (2012) Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3. Chin J Cancer 31:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang F, Fan K, Zhao Y, Xie ML (2021) Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. J Ethnopharmacol 265:113195

    Article  CAS  PubMed  Google Scholar 

  15. Xie T, Ding YH, Dong J, Fu XA (2023) MicroRNA-17-5p and microRNA-130b-3p promote radioresistance of glioma stem cells by targeting PTEN/AKT/HIF-1α pathway-controlled phosphopentose metabolism. Anal Cell Pathol 2023:6660072

    Article  Google Scholar 

  16. Xia Y, Jiang LX, Zhong TY (2018) The role of HIF‑1 alpha in chemo-/radioresistant tumors. Oncotargets Ther 11:3003–3011

    Article  Google Scholar 

  17. Harada H (2016) Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res 57(i99):i105

    Google Scholar 

  18. Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16:10

    Article  PubMed  PubMed Central  Google Scholar 

  19. Okuno T, Kawai K, Hata K, Murono K, Emoto S, Kaneko M, Sasaki K, Nishikawa T, Tanaka T, Nozawa H (2018) SN-38 acts as a radiosensitizer for colorectal cancer by inhibiting the radiation-induced up-regulation of HIF‑1 alpha. Anticancer Res 38:3323–3331

    Article  CAS  PubMed  Google Scholar 

  20. Zhang T, Niu XH, Liao LL, Cho EA, Yang HF (2013) The contributions of HIF-target genes to tumor growth in RCC. Plos One 8:e80544

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang JH, Zhang YH, Mo F, Patel G, Butterworth K, Shao CL, Prise KM (2021) The roles of HIF‑1 alpha in radiosensitivity and radiation-induced bystander effects under hypoxia. Front Cell Dev Biol 9:637454

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bahreyni-Toossi MT, Dolat E, Khanbabaei H, Zafari N, Azimian H (2019) microRNAs: potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Res-fund Mol M 816:111679

    Article  Google Scholar 

  23. Xiao SH, Yang Z, Lv RY, Zhao J, Wu M, Liao YW, Liu Q (2014) MiR-135b contributes to the radioresistance by targeting GSK3 beta in human glioblastoma multiforme cells. Plos One 9:e108810

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu B, Jiang CW, Han HX, Liu H, Tang M, Liu LX, Ji WY, Lu XC, Yang XL, Zhang YX, Liu YJ (2015) Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKt/HIF‑1 alpha signalling. Clin Exp Pharmacol P 42:1296–1307

    Article  CAS  Google Scholar 

  25. Li HL, Wang CY, Fu J, Yang XJ, Sun Y, Shao YH, Zhang LH, Yang XM, Zhang XL, Lin J (2019) PTEN expression in U251 glioma cells enhances their sensitivity to ionizing radiation by suppressing DNA repair capacity. Eur Rev Med Pharmaco 23:10453–10458

    Google Scholar 

  26. Shi YP, Liu GL, Li S, Liu XL (2020) miR-17-5p knockdown inhibits proliferation, autophagy and promotes apoptosis in thyroid cancer via targeting PTEN. Neoplasma 67:249–258

    Article  CAS  PubMed  Google Scholar 

  27. Yan W, Wang YP, Chen Y, Guo YJ, Li Q, Wei XT (2021) Exosomal miR-130b-3p promotes progression and tubular formation through targeting PTEN in oral squamous cell carcinoma. Front Cell Dev Biol 9:616306

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gu JJ, Fan KC, Zhang JH, Chen HJ, Wang SS (2018) Suppression of microRNA-130b inhibits glioma cell proliferation and invasion, and induces apoptosis by PTEN/AKT signaling. Int J Mol Med 41:284–292

    CAS  PubMed  Google Scholar 

  29. Zhang GN, Li DY, Chen H, Zhang JC, Jin XY (2018) Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol Med Rep 17:4599–4604

    CAS  PubMed  Google Scholar 

  30. Huang JX, Zhou YN, Zhong XZ, Su FL, Xu LN (2022) Effects of vitexin, a natural flavonoid glycoside, on the proliferation, invasion, and apoptosis of human U251 glioblastoma cells. Oxid Med Cell Longev 2022:3129155

    PubMed  PubMed Central  Google Scholar 

  31. Lu MMJS, Yu MML, Ma MMY, Li MMJ (2020) Vitexin inhibits the proliferation and promotes the apoptosis of gastric cancer cells via phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling pathway. J Biomater Tiss Eng 10:1843–1850

    Article  Google Scholar 

  32. Liu XL, Jiang QF, Liu HM, Luo SX (2019) Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res 52:7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding JQ, Chen ZS, Ding WL, Xiang YS, Yang JB (2023) DNA polymerase ζ suppresses the radiosensitivity of glioma cells by regulating the PI3K/AKT/mTOR pathway. Autoimmunity 56:2234101

    Article  PubMed  Google Scholar 

  34. Seol MY, Choi SH, Lee IJ, Park HS, Kim HR, Kim SK, Yoon HI (2023) Selective inhibition of PI3K isoforms in brain tumors suppresses tumor growth by increasing radiosensitivity. Yonsei Med J 64:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu J, Ye YQ, Wang Y, Zhan WJ, Yu RT (2023) STAT3-induced LncRNA LINC01094 regulates proliferation, apoptosis and radiosensitivity of glioblastoma cells by targeting the miR-545-3p/UBE2N axis. J Biol Reg Homeos Ag 37:4173–4187

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Science & Technology Project of Suzhou City for Medical Health (KJXW2020039), Research Fund of Nanjing Medical University (NMUB2020254), and Research Program of Gusu School of Nanjing Medical University (GSKY20220526), China.

Author information

Authors and Affiliations

Authors

Contributions

T. Xie: performed the cell treatment, Western blot analysis, and real-time PCR analysis, performed the animal experiment, wrote the manuscript; Y.-H. Ding: performed the animal experiment; C.-S. Sang: performed the measurement of cell viability; Z.‑X. Lin: collected and analyzed the experimental data; J. Dong: designed the study and reviewed the manuscript; X.-A. Fu: designed the study and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun Dong or Xi-An Fu.

Ethics declarations

Conflict of interest

T. Xie, Y.-H. Ding, C.-S. Sang, Z.-X. Lin, J. Dong and X.-A. Fu declare that they have no competing interests.

Ethical standards

For this article no studies with human participants were performed by any of the authors. The animal experimental scheme was reviewed and approved by the Ethics Committee of the Second Affiliated Hospital of Soochow University. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

MTT assay showed the cell viability after treatment of SU3 cells with 50–200 μM vitexin for 36 h. Data were expressed as the mean ± SD, n = 6. **P < 0.01 vs. the 0 μM vitexin (1‰ DMSO) group

Table S1

Primers used in real-time PCR assay

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Ding, YH., Sang, CS. et al. Vitexin enhances radiosensitivity of mouse subcutaneous xenograft glioma by affecting the miR-17-5p/miR-130b-3p/PTEN/HIF-1α pathway. Strahlenther Onkol 200, 535–543 (2024). https://doi.org/10.1007/s00066-024-02220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-024-02220-y

Keywords

Navigation