Skip to main content

Advertisement

Log in

Risk of cardiotoxicity induced by adjuvant anthracycline-based chemotherapy and radiotherapy in young and old Asian women with breast cancer

Risiko der Kardiotoxizität induziert durch adjuvante anthrazyklinbasierte Chemotherapie und Strahlentherapie bei jungen und alten asiatischen Frauen mit Brustkrebs

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The risk of cardiotoxicity induced by adjuvant anthracycline-based chemotherapy (CT) and radiotherapy (RT) is yet to be investigated in a large-scale randomized controlled trial with an adequate sample size of young and old women with breast cancer.

Patients and methods

To compare the occurrence of major heart events (heart failure and coronary artery disease) in patients with breast cancer, 3489 women who underwent surgical resection of the breast tumor were retrospectively selected from the Taiwan National Health Insurance Research Database. The patients were categorized into the following groups based on their treatment modalities: group 1 (n = 1113), no treatment; group 2 (n = 646), adjuvant RT alone; group 3 (n = 705), adjuvant anthracycline-based CT alone; and group 4 (n = 1025), combined adjuvant RT and anthracycline-based CT.

Results

The mean patient age was 50.35 years. Subsequent coronary artery disease and heart failure were identified in 244 (7.0%) and 206 (5.9%) patients, respectively. All three adjuvant therapies were significant independent prognostic factors of major heart events (adjusted hazard ratio [95% confidence interval]: 1.47 [1.24–1.73]; 1.48 [1.25–1.75], and 1.92 [1.65–2.23] in groups 2, 3, and 4, respectively). In patients aged ≥50 years with breast cancer who underwent surgery, the log-rank p values of groups 2 and 3 after adjustment were 0.537 and 0.001, respectively.

Conclusion

Adjuvant RT can increase cardiotoxicity in patients with breast cancer, particularly when used in combination with anthracycline-based CT. Therefore, it should be offered with optimal heart-sparing techniques, particularly in younger patients with good prognosis and long life expectancy.

Zusammenfassung

Zielsetzung

Das Risiko einer Kardiotoxizität durch adjuvante anthrazyklinbasierte Chemotherapie (CT) und Strahlentherapie (RT) muss noch in einer groß angelegten randomisierten kontrollierten Studie mit einer angemessenen Stichprobe von jungen und alten Frauen mit Brustkrebs untersucht werden.

Patienten und Methoden

Um das Auftreten von schweren Herzerkrankungen (Herzinsuffizienz und koronare Herzkrankheit) bei Patientinnen mit Brustkrebs zu vergleichen, wurden 3489 Frauen, bei denen eine chirurgische Resektion des Brusttumors durchgeführt worden war, retrospektiv aus der Taiwan National Health Insurance Research Database ausgewählt. Die Patienten wurden basierend auf ihren Behandlungsmodalitäten in die folgenden Gruppen eingeteilt: Gruppe 1 (n = 1113), keine Behandlung; Gruppe 2 (n = 646), nur adjuvante RT; Gruppe 3 (n = 705), nur adjuvante anthrazyklinbasierte CT; und Gruppe 4 (n = 1025), kombinierte adjuvante RT und anthrazyklinbasierte CT.

Ergebnisse

Das durchschnittliche Patientenalter betrug 50,35 Jahre. Nachfolgende Koronararterienerkrankung und Herzinsuffizienz wurden bei 244 (7,0 %) bzw. 206 (5,9 %) Patienten festgestellt. Alle 3 adjuvanten Therapien waren signifikante unabhängige prognostische Faktoren für schwere, das Herz betreffende Zwischenfälle (bereinigtes Hazard Ratio [95%-Konfidenzintervall]: 1,47 [1,24–1,73]; 1,48 [1,25–1,75] und 1,92 [1,65–2,23] in den Gruppen 2, 3 bzw. 4). Bei Patienten im Alter von ≥50 Jahren mit Brustkrebs, die sich einer Operation unterziehen mussten, betrugen die logarithmischen p-Werte der Gruppen 2 und 3 nach Anpassung 0,537 bzw. 0,001.

Schlussfolgerung

Adjuvante RT kann die Kardiotoxizität bei Patientinnen mit Brustkrebs erhöhen, insbesondere wenn sie in Kombination mit anthrazyklinbasierter CT angewendet wird. Daher sollte sie mit optimalen herzschonenden Techniken angeboten werden, insbesondere bei jüngeren Patienten mit guter Prognose und langer Lebenserwartung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aHR:

Adjusted hazard ratio

CAD:

Coronary artery disease

CI:

Confidence interval

CT:

Chemotherapy

DM:

Diabetes mellitus

HR:

Hazard ratio

HF:

Heart failure

HTN:

Hypertension

ICD-9-CM:

International Classification of Diseases, Ninth Revision, Clinical Modification

IPTW:

Inverse probability of treatment weighting

NHIRD:

National Health Insurance Research Database

RT:

Radiotherapy

SD:

Standard deviation

TIA:

Transient ischemic attack

References

  1. Anderson BO, Yip CH, Smith RA et al (2008) Guideline implementation for breast healthcare in low-income and middle-income countries: overview of the Breast Health Global Initiative Global Summit 2007. Cancer 113:2221–2243

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67:7–30

    Article  Google Scholar 

  3. Korde LA, Zujewski JA, Kamin L et al (2010) Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol 28:2114–2122

    Article  PubMed Central  PubMed  Google Scholar 

  4. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  5. Leong SP, Shen ZZ, Liu TJ et al (2010) Is breast cancer the same disease in Asian and Western countries? World J Surg 34:2308–2324

    Article  PubMed Central  PubMed  Google Scholar 

  6. Youlden DR, Cramb SM, Yip CH, Baade PD (2014) Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol Med 11:101–115

    PubMed Central  PubMed  Google Scholar 

  7. Matsuno RK, Anderson WF, Yamamoto S et al (2007) Early- and late-onset breast cancer types among women in the United States and Japan. Cancer Epidemiol Biomarkers Prev 16:1437–1442

    Article  PubMed  Google Scholar 

  8. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  CAS  PubMed  Google Scholar 

  9. Levy D, Kenchaiah S, Larson MG et al (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402

    Article  PubMed  Google Scholar 

  10. Peto R, Davies C, Godwin J et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432–444

    Article  CAS  PubMed  Google Scholar 

  11. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  PubMed  Google Scholar 

  12. Drafts BC, Twomley KM, D’Agostino R Jr. et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885

    Article  PubMed Central  PubMed  Google Scholar 

  13. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939

    Article  PubMed  Google Scholar 

  14. Cheng CL, Kao YH, Lin SJ, Lee CH, Lai ML (2011) Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol Drug Saf 20:236–242

    Article  PubMed  Google Scholar 

  15. Sung SF, Hsieh CY, Lin HJ, Chen YW, Yang YH, Li CY (2016) Validation of algorithms to identify stroke risk factors in patients with acute ischemic stroke, transient ischemic attack, or intracerebral hemorrhage in an administrative claims database. Int J Cardiol 215:277–282

    Article  PubMed  Google Scholar 

  16. Pan SW, Yen YF, Kou YR et al (2017) The Risk of TB in Patients With Type 2 Diabetes Initiating Metformin vs Sulfonylurea Treatment. Chest. https://doi.org/10.1016/j.chest.2017.11.040

    Article  PubMed  Google Scholar 

  17. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF (2013) A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med 32:3388–3414

    Article  PubMed Central  PubMed  Google Scholar 

  18. Darby SC, McGale P, Taylor CW, Peto R (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6:557–565

    Article  PubMed  Google Scholar 

  19. Curtis LH, Whellan DJ, Hammill BG et al (2008) Incidence and prevalence of heart failure in elderly persons, 1994–2003. Arch Intern Med 168:418–424

    Article  PubMed  Google Scholar 

  20. Barker WH, Mullooly JP, Getchell W (2006) Changing incidence and survival for heart failure in a well-defined older population, 1970–1974 and 1990–1994. Circulation 113:799–805

    Article  PubMed  Google Scholar 

  21. Roger VL, Weston SA, Redfield MM et al (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292:344–350

    Article  CAS  Google Scholar 

  22. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation 135:e146–e603

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kannel WB, Dannenberg AL, Abbott RD (1985) Unrecognized myocardial infarction and hypertension: the Framingham Study. Am Heart J 109:581–585

    Article  CAS  PubMed  Google Scholar 

  24. Sheifer SE, Manolio TA, Gersh BJ (2001) Unrecognized myocardial infarction. Ann Intern Med 135:801–811

    Article  CAS  PubMed  Google Scholar 

  25. Cuzick J, Stewart H, Rutqvist L et al (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12:447–453

    Article  CAS  PubMed  Google Scholar 

  26. Hooning MJ, Aleman BM, van Rosmalen AJ, Kuenen MA, Klijn JG, van Leeuwen FE (2006) Cause-specific mortality in long-term survivors of breast cancer: a 25-year follow-up study. Int J Radiat Oncol Biol Phys 64:1081–1091

    Article  PubMed  Google Scholar 

  27. Early Breast Cancer Trialists’ Collaborative Group (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Lancet 355:1757–1770

    Article  Google Scholar 

  28. Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I (2005) Diastolic dysfunction after mediastinal irradiation. Am Heart J 150:977–982

    Article  PubMed  Google Scholar 

  29. Orzan F, Brusca A, Gaita F, Giustetto C, Figliomeni MC, Libero L (1993) Associated cardiac lesions in patients with radiation-induced complete heart block. Int J Cardiol 39:151–156

    Article  CAS  PubMed  Google Scholar 

  30. Larsen RL, Jakacki RI, Vetter VL, Meadows AT, Silber JH, Barber G (1992) Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am J Cardiol 70:73–77

    Article  CAS  PubMed  Google Scholar 

  31. Giordano SH, Kuo YF, Freeman JL, Buchholz TA, Hortobagyi GN, Goodwin JS (2005) Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97:419–424

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hojris I, Overgaard M, Christensen JJ, Overgaard J, Radiotherapy Committee of the Danish Breast Cancer Cooperative Group (1999) Morbidity and mortality of ischaemic heart disease in high-risk breast-cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: analysis of DBCG 82b and 82c randomised trials. Lancet 354:1425–1430

    Article  CAS  PubMed  Google Scholar 

  33. Patt DA, Goodwin JS, Kuo YF et al (2005) Cardiac morbidity of adjuvant radiotherapy for breast cancer. J Clin Oncol 23:7475–7482

    Article  PubMed  Google Scholar 

  34. Doyle JJ, Neugut AI, Jacobson JS et al (2007) Radiation therapy, cardiac risk factors, and cardiac toxicity in early-stage breast cancer patients. Int J Radiat Oncol Biol Phys 68:82–93

    Article  PubMed  Google Scholar 

  35. Vallis KA, Pintilie M, Chong N et al (2002) Assessment of coronary heart disease morbidity and mortality after radiation therapy for early breast cancer. J Clin Oncol 20:1036–1042

    Article  PubMed  Google Scholar 

  36. Harris EE, Correa C, Hwang WT et al (2006) Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24:4100–4106

    Article  PubMed  Google Scholar 

  37. Singal PK, Deally CM, Weinberg LE (1987) Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–828

    Article  CAS  PubMed  Google Scholar 

  38. Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274:5038–5046

    Article  CAS  PubMed  Google Scholar 

  39. Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ (2001) Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 108:585–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tan TC, Neilan TG, Francis S, Plana JC, Scherrer-Crosbie M (2015) Anthracycline-induced cardiomyopathy in adults. Compr Physiol 5:1517–1540

    Article  PubMed  Google Scholar 

  41. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468

    Article  CAS  PubMed  Google Scholar 

  42. Capranico G, Tinelli S, Austin CA, Fisher ML, Zunino F (1992) Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim Biophys Acta 1132:43–48

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Liu X, Bawa-Khalfe T et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642

    Article  CAS  PubMed  Google Scholar 

  44. Luminari S, Montanini A, Caballero D et al (2010) Nonpegylated liposomal doxorubicin (MyocetTM) combination (R-COMP) chemotherapy in elderly patients with diffuse large B‑cell lymphoma (DLBCL): results from the phase II EUR018 trial. Ann Oncol 21:1492–1499

    Article  CAS  PubMed  Google Scholar 

  45. Tirelli U, Errante D, Van Glabbeke M et al (1998) CHOP is the standard regimen in patients 〉 or = 70 years of age with intermediate-grade and high-grade non-Hodgkin’s lymphoma: results of a randomized study of the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Study Group. J Clin Oncol 16:27–34

    Article  CAS  PubMed  Google Scholar 

  46. Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95:1592–1600

    Article  CAS  PubMed  Google Scholar 

  47. Perez EA, Rodeheffer R (2004) Clinical cardiac tolerability of trastuzumab. J Clin Oncol 22:322–329

    Article  CAS  PubMed  Google Scholar 

  48. Fiuza M (2009) Cardiotoxicity associated with trastuzumab treatment of HER2+ breast cancer. Adv Ther 26(Suppl 1):S9–S17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Taipei Medical University for funding (108-wf-swf-09).

Author Contributions

Conception and Design: Chih-Hsin Lee, Jun-Fu Zhang and Szu-Yuan Wu; Collection and Assembly of Data: J Chih-Hsin Lee, Jun-Fu Zhang, Kevin Sheng-Po Yuan, Alexander T.H. Wu and Szu-Yuan Wu; Data Analysis and Interpretation: Chih-Hsin Lee, Jun-Fu Zhang and Szu-Yuan Wu; Administrative Support: Szu-Yuan Wu; Manuscript Writing: All authors; Final Approval of Manuscript: All authors

Funding

Taipei Medical University and Wan Fang Hospital (108-wf-swf-09)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szu-Yuan Wu MD, MPH, PhD.

Ethics declarations

Conflict of interest

C.-H. Lee, J.-F. Zhang, K.S.-P. Yuan, A.T.H. Wu and S.-Y. Wu declare that they have no competing interests.

Ethical standards

Our protocols were reviewed and approved by the Institutional Review Board of Taipei Medical University (TMU-JIRB No. 201402018).

Additional information

Chih-Hsin Lee died before publishing this article.

Availability of data and material: The datasets supporting the study conclusions are included within this manuscript and its additional files.

Caption Electronic Supplementary Material

66_2019_1428_MOESM1_ESM.docx

Table S1. Multivariate Cox regression analysis in Asian women with breast cancer who underwent surgery and received different adjuvant treatments (outcome of interest: coronary artery disease).

66_2019_1428_MOESM2_ESM.docx

Table S2. Multivariate Cox regression analysis in Asian women with breast cancer who underwent surgery and received different adjuvant treatments (outcome of interest: heart failure).

66_2019_1428_MOESM3_ESM.docx

Table S3. Multivariate Cox regression analysis in Asian women with breast cancer who underwent surgery and received different adjuvant treatments (interaction analysis for age and adjuvant therapies).

66_2019_1428_MOESM4_ESM.docx

Table S4. Multivariate Cox regression analysis in old (age ≥50 years) Asian women with breast cancer who underwent surgery and received different adjuvant treatments (interaction analysis for radiotherapy and anthracycline-based chemotherapy).

66_2019_1428_MOESM5_ESM.docx

Table S5. Multivariate Cox regression analysis in young (age <50 years) Asian women with breast cancer who underwent surgery and received different adjuvant treatments (interaction analysis for radiotherapy and anthracycline-based chemotherapy).

66_2019_1428_MOESM6_ESM.docx

Table S6. Competing risk analysis by using the cause-specific proportional hazard model in Asian women with breast cancer who underwent surgery and received different adjuvant treatments (endpoint of interest: death).

66_2019_1428_MOESM7_ESM.docx

Table S7. Multivariate Cox regression in 3073 surviving Asian women with breast cancer who underwent surgery and received different adjuvant treatments for risk factors of major cardiac events.

66_2019_1428_MOESM8_ESM.docx

Table S8. Multivariate Cox regression analysis in Asian women with breast cancer who underwent surgery and received different adjuvant treatments (outcome of interest: major cardiac events)

66_2019_1428_MOESM9_ESM.docx

Figure S1. Estimates of cumulative incidence of major cardiac events in Asian women with breast cancer who underwent surgery, as obtained using the inverse probability of treatment weighting-adjusted Kaplan–Meier method and stratified by total dose of radiotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Zhang, JF., Yuan, K.SP. et al. Risk of cardiotoxicity induced by adjuvant anthracycline-based chemotherapy and radiotherapy in young and old Asian women with breast cancer. Strahlenther Onkol 195, 629–639 (2019). https://doi.org/10.1007/s00066-019-01428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01428-7

Keywords

Schlüsselwörter

Navigation