Skip to main content

Advertisement

Log in

Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer’s Disease

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a heterogeneous progressive neurocognitive disorder. Although different neuroimaging modalities have been used for the identification of early diagnostic and prognostic factors of AD, there is no consolidated view of the findings from the literature. Here, we aim to provide a comprehensive account of different neural correlates of cognitive dysfunction via magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) (resting-state and task-related), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) modalities across the cognitive groups i.e., normal cognition, mild cognitive impairment (MCI), and AD. A total of 46 meta-analyses met the inclusion criteria, including relevance to MCI, and/or AD along with neuroimaging modality used with quantitative and/or functional data. Volumetric MRI identified early anatomical changes involving transentorhinal cortex, Brodmann area 28, followed by the hippocampus, which differentiated early AD from healthy subjects. A consistent pattern of disruption in the bilateral precuneus along with the medial temporal lobe and limbic system was observed in fMRI, while DTI substantiated the observed atrophic alterations in the corpus callosum among MCI and AD cases. Default mode network hypoconnectivity in bilateral precuneus (PCu)/posterior cingulate cortices (PCC) and hypometabolism/hypoperfusion in inferior parietal lobules and left PCC/PCu was evident. Molecular imaging revealed variable metabolite concentrations in PCC. In conclusion, the use of different neuroimaging modalities together may lead to identification of an early diagnostic and/or prognostic biomarker for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patterson C. World Alzheimer report 2018—the state of the art of dementia research: new frontiers. London, UK: Alzheimer’s Disease International (ADI); 2018.

    Google Scholar 

  2. WHO. Dementia. 2019. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 8 Aug 2019.

  3. Frisoni GB, Weiner MW. Alzheimer’s Disease Neuroimaging Initiative special issue. Neurobiol Aging. 2010;31:1259–62.

    Article  PubMed  Google Scholar 

  4. Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6.

    Article  CAS  PubMed  Google Scholar 

  5. Petersen RC. Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia. 2000;15:93–101.

    PubMed  CAS  Google Scholar 

  6. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–6.

    Article  PubMed  CAS  Google Scholar 

  7. Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol. 1992;159:591–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yin RH, Tan L, Liu Y, Wang WY, Wang HF, Jiang T, Radua J, Zhang Y, Gao J, Canu E, Migliaccio R, Filippi M, Gorno-Tempini ML, Yu JT. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Alzheimer’s Disease. J Alzheimers Dis. 2015;47:495–507.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fan J, Donkin J, Wellington C. Greasing the wheels of Abeta clearance in Alzheimer’s disease: the role of lipids and apolipoprotein E. Biofactors. 2009;35:239–48.

    Article  PubMed  CAS  Google Scholar 

  10. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, Evans AC. Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol Aging. 2008;29:23–30.

    Article  PubMed  Google Scholar 

  11. Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr. Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage. 2008;39:1186–97.

    Article  PubMed  Google Scholar 

  12. Julkunen V, Niskanen E, Koikkalainen J, Herukka SK, Pihlajamäki M, Hallikainen M, Kivipelto M, Muehlboeck S, Evans AC, Vanninen R, Hilkka Soininen. Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer’s disease patients: a longitudinal study. J Alzheimers Dis. 2010;21:1141–51.

    Article  PubMed  Google Scholar 

  13. Koch K, Myers NE, Göttler J, Pasquini L, Grimmer T, Förster S, Manoliu A, Neitzel J, Kurz A, Förstl H, Riedl V, Wohlschläger AM, Drzezga A, Sorg C. Disrupted Intrinsic Networks Link Amyloid-β Pathology and Impaired Cognition in Prodromal Alzheimer’s Disease. Cereb Cortex. 2015;25:4678–88.

    Article  PubMed  Google Scholar 

  14. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30:3127–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR Imaging: New Frontier in Alzheimer’s Disease and Other Dementias. Front Mol Neurosci. 2017;10:343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol. 2014;35:2030–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr, Dickson DW, Kantarci K. Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci. 2014;34:16247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11:805–21.

    Article  PubMed  CAS  Google Scholar 

  20. Giorgio A, De Stefano N. Clinical use of brain volumetry. J Magn Reson Imaging. 2013;37:1–14.

    Article  PubMed  Google Scholar 

  21. Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47:1196–206.

    Article  PubMed  Google Scholar 

  22. Rathakrishnan BG, Doraiswamy PM, Petrella JR. Science to practice: translating automated brain MRI volumetry in Alzheimer’s disease from research to routine diagnostic use in the work-up of dementia. Front Neurol. 2014;4:216.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Manuello J, Nani A, Premi E, Borroni B, Costa T, Tatu K, Liloia D, Duca S, Cauda F. The Pathoconnectivity Profile of Alzheimer’s Disease: A Morphometric Coalteration Network Analysis. Front Neurol. 2018;8:739.

    Article  PubMed  Google Scholar 

  24. Zakzanis KK, Graham SJ, Campbell Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev. 2003;13:1–18.

    Article  PubMed  Google Scholar 

  25. Yang J, Pan P, Song W, Huang R, Li J, Chen K, Gong Q, Zhong J, Shi H, Shang H. Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. J Neurol Sci. 2012;316:21–9.

    Article  PubMed  Google Scholar 

  26. Gu L, Zhang Z. Exploring Structural and Functional Brain Changes in Mild Cognitive Impairment: A Whole Brain ALE Meta-Analysis for Multimodal MRI. ACS Chem Neurosci. 2019;10:2823–9.

    Article  PubMed  CAS  Google Scholar 

  27. Fathy YY, Hoogers SE, Berendse HW, van der Werf YD, Visser PJ, de Jong FJ, van de Berg WDJ. Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis. Brain Imaging Behav. 2020;14:2799–816.

    Article  PubMed Central  Google Scholar 

  28. Schroeter ML, Neumann J. Combined Imaging Markers Dissociate Alzheimer’s Disease and Frontotemporal Lobar Degeneration - An ALE Meta-Analysis. Front Aging Neurosci. 2011;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chapleau M, Aldebert J, Montembeault M, Brambati SM. Atrophy in Alzheimer’s Disease and Semantic Dementia: An ALE Meta-Analysis of Voxel-Based Morphometry Studies. J Alzheimers Dis. 2016;54:941–55.

    Article  PubMed  CAS  Google Scholar 

  30. Wang WY, Yu JT, Liu Y, Yin RH, Wang HF, Wang J, Tan L, Radua J, Tan L. Voxel-based meta-analysis of grey matter changes in Alzheimer’s disease. Transl Neurodegener. 2015;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, Thompson P, Fox NC. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging. 2009;30:1711–23.

    Article  PubMed  Google Scholar 

  32. Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement (Amst). 2015;1:487–504.

    Article  Google Scholar 

  33. Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum Brain Mapp. 2017;38:5890–904.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li J, Pan P, Huang R, Shang H. A meta-analysis of voxel-based morphometry studies of white matter volume alterations in Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36:757–63.

    Article  PubMed  Google Scholar 

  35. Clerx L, Visser PJ, Verhey F, Aalten P. New MRI markers for Alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. J Alzheimers Dis. 2012;29:405–29.

    Article  PubMed  Google Scholar 

  36. Gellersen HM, Guo CC, O’Callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88:780–8.

    Article  PubMed  Google Scholar 

  37. Schulte T, Müller-Oehring EM. Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev. 2010;20:174–90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang XD, Ren M, Zhu MW, Gao WP, Zhang J, Shen H, Lin ZG, Feng HL, Zhao CJ, Gao K. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer’s dementia or mild cognitive impairment: a meta-analysis of the region of interest structural imaging studies. J Psychiatr Res. 2015;63:10–9.

    Article  PubMed  Google Scholar 

  39. Di Paola M, Luders E, Di Iulio F, Cherubini A, Passafiume D, Thompson PM, Caltagirone C, Toga AW, Spalletta G. Callosal atrophy in mild cognitive impairment and Alzheimer’s disease: different effects in different stages. Neuroimage. 2010;49:141–9.

    Article  PubMed  Google Scholar 

  40. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32:1733–41.

    Article  PubMed  Google Scholar 

  41. Seo EH, Park WY, Choo IH. Structural MRI and Amyloid PET Imaging for Prediction of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis. Psychiatry Investig. 2017;14:205–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Taylor WD, Hsu E, Krishnan KR, MacFall JR. Diffusion tensor imaging: background, potential, and utility in psychiatric research. Biol Psychiatry. 2004;55:201–7.

    Article  PubMed  Google Scholar 

  43. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2011;32:2322.e5-18.

    Article  Google Scholar 

  46. Yu J, Lam CLM, Lee TMC. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci Biobehav Rev. 2017;83:405–16.

    Article  PubMed  Google Scholar 

  47. Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol. 2009;21:63–75.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  49. Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16:1484–92.

    Article  PubMed  Google Scholar 

  50. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  51. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108:2242–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pan P, Zhu L, Yu T, Shi H, Zhang B, Qin R, Zhu X, Qian L, Zhao H, Zhou H, Xu Y. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Res Rev. 2017;35:12–21.

    Article  PubMed  Google Scholar 

  54. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD. A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. 2011;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li HJ, Hou XH, Liu HH, Yue CL, He Y, Zuo XN. Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum Brain Mapp. 2015;36:1217–32.

    Article  PubMed  CAS  Google Scholar 

  56. Eyler LT, Elman JA, Hatton SN, Gough S, Mischel AK, Hagler DJ, Franz CE, Docherty A, Fennema-Notestine C, Gillespie N, Gustavson D, Lyons MJ, Neale MC, Panizzon MS, Dale AM, Kremen WS. Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2019;70:107–20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang C, Pan Y, Liu Y, Xu K, Hao L, Huang F, Ke J, Sheng L, Ma H, Guo W. Aberrant default mode network in amnestic mild cognitive impairment: a meta-analysis of independent component analysis studies. Neurol Sci. 2018;39:919–31.

    Article  PubMed  Google Scholar 

  58. Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;8:73–85.

    Article  Google Scholar 

  59. Lau WK, Leung MK, Lee TM, Law AC. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis. Transl Psychiatry. 2016;6:e790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. Neuroimage. 2009;45:181–90.

    Article  PubMed  Google Scholar 

  61. Nellessen N, Rottschy C, Eickhoff SB, Ketteler ST, Kuhn H, Shah NJ, Schulz JB, Reske M, Reetz K. Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer’s disease: a coordinate-based meta-analysis. Brain Struct Funct. 2015;220:1555–71.

    Article  PubMed  CAS  Google Scholar 

  62. Terry DP, Sabatinelli D, Puente AN, Lazar NA, Miller LS. A Meta-Analysis of fMRI Activation Differences during Episodic Memory in Alzheimer’s Disease and Mild Cognitive Impairment. J Neuroimaging. 2015;25:849–60.

    Article  PubMed  Google Scholar 

  63. Pievani M, Pini L, Ferrari C, Pizzini FB, Boscolo Galazzo I, Cobelli C, Cotelli M, Manenti R, Frisoni GB. Coordinate-Based Meta-Analysis of the Default Mode and Salience Network for Target Identification in Non-Invasive Brain Stimulation of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia Networks. J Alzheimers Dis. 2017;57:825–43.

    Article  PubMed  Google Scholar 

  64. Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M; Alzheimer’s Disease Neuroimaging Initiative. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Hum Brain Mapp. 2019;40:5424–42.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Matsuda H, Shigemoto Y, Sato N. Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET. Jpn J Radiol. 2019;37:735–49.

    Article  PubMed  Google Scholar 

  66. Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med. 2015;45:224–33.

    Article  PubMed  Google Scholar 

  67. Ma HR, Sheng LQ, Pan PL, Wang GD, Luo R, Shi HC, Dai ZY, Zhong JG. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: a meta-analysis. Transl Neurodegener. 2018;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009;30:404–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Choe YS, Lee KH. PET Radioligands for Imaging of Tau Pathology: Current Status. Nucl Med Mol Imaging. 2015;49:251–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:374–85.

    Article  PubMed  CAS  Google Scholar 

  71. Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement (Amst). 2015;1:5–13.

    Article  Google Scholar 

  72. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, Scheltens P, Visser PJ; Amyloid PET Study Group, Verfaillie SC, Zwan MD, Adriaanse SM, Lammertsma AA, Barkhof F, Jagust WJ, Miller BL, Rosen HJ, Landau SM, Villemagne VL, Rowe CC, Lee DY, Na DL, Seo SW, Sarazin M, Roe CM, Sabri O, Barthel H, Koglin N, Hodges J, Leyton CE, Vandenberghe R, van Laere K, Drzezga A, Forster S, Grimmer T, Sánchez-Juan P, Carril JM, Mok V, Camus V, Klunk WE, Cohen AD, Meyer PT, Hellwig S, Newberg A, Frederiksen KS, Fleisher AS, Mintun MA, Wolk DA, Nordberg A, Rinne JO, Chételat G, Lleo A, Blesa R, Fortea J, Madsen K, Rodrigue KM, Brooks DJ. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–49.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O’Keefe G, Price R, Raniga P, Robins P, Acosta O, Lenzo N, Szoeke C, Salvado O, Head R, Martins R, Masters CL, Ames D, Villemagne VL. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31:1275–83.

    Article  PubMed  Google Scholar 

  74. Chen X, Li M, Wang S, Zhu H, Xiong Y, Liu X. Pittsburgh compound B retention and progression of cognitive status--a meta-analysis. Eur J Neurol. 2014;21:1060–7.

    Article  PubMed  CAS  Google Scholar 

  75. Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Res Rev. 2019;50:1–8.

    Article  PubMed  CAS  Google Scholar 

  76. Talwar P, Kushwaha S, Gupta R, Agarwal R. Systemic Immune Dyshomeostasis Model and Pathways in Alzheimer’s Disease. Front Aging Neurosci. 2019;11:290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37:2571–86.

    Article  PubMed  Google Scholar 

  78. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB. Inhibition of N‑acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport. 1996;7:1397–400.

    Article  CAS  PubMed  Google Scholar 

  79. Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol. 1995;46:531–40.

    Article  PubMed  CAS  Google Scholar 

  80. Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, Josephs KA, Boeve BF, Petersen RC, Jack CR Jr. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology. 2008;248:210–20.

    Article  PubMed  Google Scholar 

  81. Wang H, Tan L, Wang HF, Liu Y, Yin RH, Wang WY, Chang XL, Jiang T, Yu JT. Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. J Alzheimers Dis. 2015;46:1049–70.

    Article  PubMed  CAS  Google Scholar 

  82. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8. Erratum in: Arch Neurol 1999;56:760.

    Article  PubMed  CAS  Google Scholar 

  83. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92.

    Article  PubMed  CAS  Google Scholar 

  84. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94.

    Article  PubMed  CAS  Google Scholar 

  85. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62:1160–3; discussion 1167.

    Article  PubMed  Google Scholar 

  86. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364:2227–34.

    Article  PubMed  CAS  Google Scholar 

  87. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, Walter S, Trojanowski JQ, Shaw LM, Beckett LA, Jack CR Jr, Jagust W, Toga AW, Saykin AJ, Morris JC, Green RC, Weiner MW; Alzheimer’s Disease Neuroimaging Initiative. Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement. 2010;6:239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  89. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44.

    Article  CAS  PubMed  Google Scholar 

  90. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed. 1987. pp. 971–9.

    Google Scholar 

  91. World Health Organization. ICD-10: the ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. ICD-10: the ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. 1993. p. 248.

    Google Scholar 

  92. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9 Suppl 1:173–6; discussion 177-8.

    Article  PubMed  Google Scholar 

  93. Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET. Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:1147–55.

    Article  PubMed  CAS  Google Scholar 

  94. Schmand B, Huizenga HM, van Gool WA. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychol Med. 2010;40:135–45.

    Article  PubMed  CAS  Google Scholar 

  95. Boccia M, Acierno M, Piccardi L. Neuroanatomy of Alzheimer’s Disease and Late-Life Depression: A Coordinate-Based Meta-Analysis of MRI Studies. J Alzheimers Dis. 2015;46:963–70.

    Article  PubMed  Google Scholar 

  96. Liu Y, Yu JT, Wang HF, Han PR, Tan CC, Wang C, Meng XF, Risacher SL, Saykin AJ, Tan L. APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86:127–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, Nimesh G Desai, Institute of Human Behaviour and Allied Sciences (IHBAS), for motivation and unconditional support. PT acknowledges DST, Government of India for providing fellowship (CSRI-PDF). We thank the anonymous reviewers for their helpful suggestions for improving the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

P. Talwar and S. Kushwaha conceived, performed data mining, interpretation, and wrote the study. M. Chaturvedi performed literature mining, data interpretation and wrote the manuscript. V. Mahajan contributed by helping in improving the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Puneet Talwar or Suman Kushwaha.

Ethics declarations

Conflict of interest

P. Talwar, S. Kushwaha, M. Chaturvedi and V. Mahajan declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors.

Additional information

The authors P. Talwar and S. Kushwaha contributed equally to the manuscript.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, P., Kushwaha, S., Chaturvedi, M. et al. Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer’s Disease. Clin Neuroradiol 31, 953–967 (2021). https://doi.org/10.1007/s00062-021-01057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-021-01057-7

Keywords

Navigation