Skip to main content
Log in

Removal of epicardial adipose tissue after myocardial infarction improves cardiac function

Entfernung von epikardialem Fettgewebe nach Herzinfarkt verbessert die Herzfunktion

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to assess the role of lipolysis of epicardial adipose tissue (EAT) in cardiac function after myocardial infarction (MI).

Methods

We used a rat model of MI with or without EAT removal to study the effects of EAT lipolysis on cardiovascular function. Echocardiography and cardiac catheterization were used to determine cardiac function, and infarct size and histopathology specimens were analyzed in postmortem sections. Inflammatory responses were evaluated via flow cytometry and Elisa analyses.

Results

We found that the lipolysis of EAT increased significantly after MI. Removal of the EAT after MI (MI-EAT) improved cardiac function by nearly 10% and decreased the infarct area by 6% when compared with rats retaining EAT after MI (MI+EAT). Furthermore, the removal of EAT reduced the number of CD45-positive leukocytes (50 vs. 34.8%) and increased the ratio of macrophage/leukocytes (56 vs. 75%) in the infarcted heart. Compared with the MI+EAT group, the concentration of tumor necrosis factor-alpha and interleukin 1‑beta were reduced in the MI-EAT group.

Conclusion

Lipolysis of EAT increased significantly after MI. Removal of EAT improved cardiac function, in part, by weakening the inflammatory response.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, die Bedeutung der Lipolyse von epikardialem Fettgewebe (EAT, „epicardial adipose tissue“) für die Herzfunktion nach Myokardinfarkt (MI) zu untersuchen.

Methoden

Die Autoren verwendeten ein Rattenmodell des MI mit oder ohne Fettentfernung, um die Auswirkungen der Lipolyse des EAT auf die kardiovaskuläre Funktion zu untersuchen. Mit der Echokardiographie und der Herzkatheteruntersuchung wurde die Herzfunktion erfasst. Infarktgröße und Histopathologie wurden anhand der Obduktionsbefunde ermittelt. Entzündliche Reaktionen wurden mittels Durchflusszytometrie und ELISA-Tests untersucht.

Ergebnisse

Die Autoren stellten fest, dass die Lipolyse des EAT nach MI signifikant anstieg. Die Entfernung des EAT nach MI (MI-EAT) führte zur Verbesserung der Herzfunktion um fast 10% und zur Abnahme des Infarktareals um 6% im Vergleich zu Ratten mit erhaltenem EAT nach MI (MI+EAT). Außerdem kam es durch die Entfernung des EAT zur Verminderung der Anzahl CD45-positiver Leukozyten (50 vs. 34,8%) und zum Anstieg des Quotienten aus Makrophagen und Leukozyten (56 vs. 75%) im infarzierten Herzgewebe. Gegenüber der MI+EAT-Gruppe waren die Werte für Tumornekrosefaktor-alpha und Interleukin 1‑beta in der MI-EAT-Gruppe vermindert.

Schlussfolgerung

Die Lipolyse des EAT nahm signifikant nach MI zu. Mit der Entfernung des EAT kam es zur verbesserten Herzfunktion, teilweise durch Abschwächung der Entzündungsreaktion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153(6):907–917

    Article  CAS  PubMed  Google Scholar 

  3. Cherian S, Lopaschuk GD, Carvalho E (2012) Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab 303(8):E937–E949

    Article  CAS  PubMed  Google Scholar 

  4. Nakazato R, Shmilovich H, Tamarappoo BK et al (2011) Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr 5(3):172–179

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity 16(4):887–892

    Article  PubMed  Google Scholar 

  6. Nelson AJ, Worthley MI, Psaltis PJ et al (2009) Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2(10):536–543

    Article  PubMed  Google Scholar 

  8. Nichols JH, Samy B, Nasir K et al (2008) Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr 2(5):288–295

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahabadi AA, Massaro JM, Rosito GA et al (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30(7):850–856

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613

    Article  PubMed  Google Scholar 

  11. Ding J, Hsu FC, Harris TB et al (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaldakov GN, Fiore M, Stankulov IS et al (2004) Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res 146:279–289

    Article  CAS  PubMed  Google Scholar 

  13. Kremen J, Dolinkova M, Krajickova J et al (2006) Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab 91(11):4620–4627

    Article  CAS  PubMed  Google Scholar 

  14. Marchington JM, Pond CM (1990) Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 14(12):1013–1022

    CAS  PubMed  Google Scholar 

  15. Anzai A, Anzai T, Nagai S et al (2012) Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125(10):1234–1245

    Article  PubMed  Google Scholar 

  16. Haunso S, Paaske WP, Sejrsen P, Amtorp O (1980) Capillary permeability in canine myocardium as determined by bolus injection, residue detection. Acta Physiol Scand 108(4):389–397

    Article  CAS  PubMed  Google Scholar 

  17. Shichita T, Sugiyama Y, Ooboshi H et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950

    Article  CAS  PubMed  Google Scholar 

  18. Yan X, Anzai A, Katsumata Y et al (2013) Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 62:24–35

    Article  CAS  PubMed  Google Scholar 

  19. Deng J, Liu S, Zou L, Xu C, Geng B, Xu G (2012) Lipolysis response to endoplasmic reticulum stress in adipose cells. J Biol Chem 287(9):6240–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robert-Sargeant S, Doyle W (1993) Fats of life (continuing education credit). Nurs Stand 7(26 Suppl NU):9–16

    Article  CAS  PubMed  Google Scholar 

  21. Resorlu H, Akbal A, Resorlu M et al (2015) Epicardial adipose tissue thickness in patients with ankylosing spondylitis. Clin Rheumatol 34(2):295–299

    Article  PubMed  Google Scholar 

  22. Vahdat K, Azizi F, Zandi K, Assadi M, Nabipour I (2012) Chronic inflammation is correlated with percentage of body fat independent of the burden of infection. Inflammation 35(4):1322–1329

    Article  CAS  PubMed  Google Scholar 

  23. Alp H, Eklioglu BS, Atabek ME et al (2014) Evaluation of epicardial adipose tissue, carotid intima-media thickness and ventricular functions in obese children and adolescents. J Pediatr Endocrinol Metab 27(9–10):827–835

    PubMed  Google Scholar 

  24. Burgeiro A, Fuhrmann A, Cherian S et al (2016) Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 310(7):E550–E564

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B 94(2):225–232

    Article  CAS  PubMed  Google Scholar 

  26. Volkova LP, Bondarenko MI, Severin NF (1981) Lipid peroxide and free fatty acid dynamics in acute myocardial infarct. Vrach Delo 12:35–38

    Google Scholar 

  27. Fazekas T, Szekeres L (1989) Effects of the lipolysis inhibiting agent beta-pyridylcarbinol (Ronicol) in acute myocardial ischaemia. Acta Physiol Hung 74(2):169–174

    CAS  PubMed  Google Scholar 

  28. Mattacks CA, Pond CM (1988) Site-specific and sex differences in the rates of fatty acid/triacylglycerol substrate cycling in adipose, tissue and muscle of sedentary and exercised dwarf hamsters (Phodopus sungorus). Int J Obes 12(6):585–597

    CAS  PubMed  Google Scholar 

  29. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466

    Article  PubMed  Google Scholar 

  31. Ouwens DM, Sell H, Greulich S, Eckel J (2010) The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med 14(9):2223–2234

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bell D, Jackson M, Nicoll JJ, Millar A, Dawes J, Muir AL (1990) Inflammatory response, neutrophil activation, and free radical production after acute myocardial infarction: effect of thrombolytic treatment. Br Heart J 63(2):82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nah DY, Rhee MY (2009) The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J 39(10):393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47

    Article  CAS  PubMed  Google Scholar 

  35. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170(3):818–829

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No: 81170177, 81030002, and 8147054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Ethics declarations

Conflict of interest

H.-X. Chang, X.-J. Zhao, Q.-L. Zhu, Q. Hou, and Y. Li declare that they have no competing interests.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Hai-Xia Chang and Xiao-Jing Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Zhao, X., Zhu, Q. et al. Removal of epicardial adipose tissue after myocardial infarction improves cardiac function. Herz 43, 258–264 (2018). https://doi.org/10.1007/s00059-017-4555-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4555-4

Keywords

Schlüsselwörter

Navigation