Skip to main content
Log in

Increase of circulating stromal cell-derived factor-1 in heart failure patients

Anstieg des zirkulierenden SDF-1 bei Patienten mit Herzinsuffizienz

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

The role of circulating stromal cell-derived factor-1 (SDF-1) in heart failure (HF) has not been defined. The aim of this study was to examine the circulating SDF-1 levels in hospitalized heart failure (HHF) patients.

Methods

Circulating SDF-1 and other clinical variables, including N-terminal pro-brain natriuretic peptide (NT-proBNP), C-reactive protein (CRP), and echocardiographic parameters, were measured in HHF patients (n = 69) and healthy control subjects (n = 35).

Results

The circulating SDF-1 level was significantly greater in patients with HF (5,101 ± 1,977 pg/ml) compared with the control subjects (1,879 ± 1,417 pg/ml; p < 0.001). Circulating SDF-1 levels were positively correlated with NT-proBNP (r = 0.46 p < 0.001) and CRP (r = 0.53 p < 0.001) levels, and negatively correlated with left ventricular ejection fraction values (r = − 0.41, p < 0.001).

Conclusion

The level of circulating SDF-1 increases in HHF patients.

Zusammenfassung

Hintergrund

Bisher ist die Rolle der zirkulierenden SDF-1 („stromal cell-derived factor-1“) bei Herzinsuffizienz nicht geklärt. Ziel der vorliegenden Studie war es, die Werte des zirkulierenden SDF-1 bei stationär behandelten Patienten mit Herzinsuffizienz zu untersuchen.

Methoden

Zirkulierender SDF-1 und andere klinische Variablen, einschließlich des NT-proBNP („n-terminal pro-brain natriuretic peptide“), C-reaktiven Proteins (CRP) und echokardiographischer Parameter, wurden bei stationär behandelten Patienten mit Herzinsuffizienz (n = 69) und gesunden Kontrollen gemessen (n = 35).

Ergebnisse

Der Wert des zirkulierenden SDF-1 war bei Patienten mit Herzinsuffizienz signifikant höher (5101 ± 1977 pg/ml) als bei den Kontrollen (1879 ± 1417 pg/ml; p < 0,001). Es bestand eine positive Korrelation der Werte des zirkulierenden SDF-1 mit den Werten für NT-proBNP (r = 0,46; p < 0,001) und CRP (r = 0,53; p < 0,001) und eine negative Korrelation mit den Werten der linksventrikulären Ejektionsfraktion (r = − 0,41; p < 0,001).

Schlussfolgerung

Bei stationär behandelten Patienten mit Herzinsuffizienz kommt es zu einem Anstieg des zirkulierenden SDF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Cleland JG, Khand A, Clark A (2001) The heart failure epidemic: exactly how big is it? Eur Heart J 22:623–626

    Article  CAS  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL et al (2013) Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127:143–152

    Article  PubMed  Google Scholar 

  3. Maisel AS, Krishnaswamy P, Nowak RM et al (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    Article  CAS  PubMed  Google Scholar 

  4. Januzzi JL Jr, Camargo CA, Anwaruddin S et al (2005) The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95:948–954

    Article  CAS  PubMed  Google Scholar 

  5. Suleiman M, Khatib R, Agmon Y et al (2006) Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol 47:962–968

    Article  PubMed  Google Scholar 

  6. Kimmenade RR van, Januzzi JL Jr, Ellinor PT et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224

    Article  PubMed  Google Scholar 

  7. D’Apuzzo M, Rolink A, Loetscher M et al (1997) The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 27:1788–1793

    Article  Google Scholar 

  8. Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 91:2305–2309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nagasawa T, Nakajima T, Tachibana K et al (1996) Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A 93:14726–14729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ratajczak MZ, Zuba-Surma E, Kucia M et al (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    Article  CAS  PubMed  Google Scholar 

  11. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    Article  CAS  PubMed  Google Scholar 

  12. Aiuti A, Tavian M, Cipponi A et al (1999) Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 29:1823–1831

    Article  CAS  PubMed  Google Scholar 

  13. Aiuti A, Turchetto L, Cota M et al (1999) Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood 94:62–73

    CAS  PubMed  Google Scholar 

  14. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  15. Tang YL, Zhu W, Cheng M et al (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sweeney EA, Lortat-Jacob H, Priestley GV et al (2002) Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 99:44–51

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Mal N, Kiedrowski M et al (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21:3197–3207

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Dai S, Wu WJ et al (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116:654–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Abbott JD, Huang Y, Liu D et al (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  20. Elmadbouh I, Haider H, Jiang S et al (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42:792–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Deglurkar I, Mal N, Mills WR et al (2006) Mechanical and electrical effects of cell-based gene therapy for ischemic cardiomyopathy are independent. Hum Gene Ther 17:1144–1151

    Article  CAS  PubMed  Google Scholar 

  22. Sundararaman S, Miller TJ, Pastore JM et al (2011) Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther 18:867–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  CAS  PubMed  Google Scholar 

  24. Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34 + progenitor cells. Eur Heart J 30:584–593

    Article  CAS  PubMed  Google Scholar 

  25. Gazitt Y, Liu Q (2001) Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34 + cells in mobilized peripheral blood of non-Hodgkin’s lymphoma patients. Stem Cells 19:37–45

    Article  CAS  PubMed  Google Scholar 

  26. Groves MD, Hess KR, Puduvalli VK et al (2009) Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. J Neurooncol 94:229–234

    Article  CAS  PubMed  Google Scholar 

  27. Wurster T, Stellos K, Geisler T et al (2012) Expression of stromal-cell-derived factor-1 (SDF-1): a predictor of ischaemic stroke? Eur J Neurol 19:395–401

    Article  CAS  PubMed  Google Scholar 

  28. Loader B, Stokic D, Riedl M et al (2008) Combined analysis of audiologic performance and the plasma biomarker stromal cell-derived factor 1a in type 2 diabetic patients. Otol Neurotol y 29:739–744

    Article  Google Scholar 

  29. Li SL, Lin W, Zhang Y et al (2012) Stromal cell-derived factor-1alpha as a novel biomarker for hyperlipidemia. Tohoku J Exp Med 228:355–363

    Article  CAS  PubMed  Google Scholar 

  30. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  31. Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694

    Article  CAS  PubMed  Google Scholar 

  32. Levesque JP, Hendy J, Takamatsu Y et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Laske C, Stellos K, Eschweiler GW et al (2008) Decreased CXCL12 (SDF-1) plasma levels in early Alzheimer’s disease: a contribution to a deficient hematopoietic brain support? J Alzheimers Dis 15:83–95

    CAS  PubMed  Google Scholar 

  34. Kim HK, Kim JE, Chung J et al (2007) Plasma level of stromal derived factor-1 (SDF-1) is increased in disseminated intravascular coagulation patients who have poor outcomes: in vitro effect of SDF-1 on coagulopathy. Thromb Res 120:559–566

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda M, Morita Y, Hanamoto H et al (2004) CD34 + progenitors from MDS patients are unresponsive to SDF-1, despite high levels of SDF-1 in bone marrow plasma. Leukemia 18:1038–1040

    Article  CAS  PubMed  Google Scholar 

  36. Jorbenadze R, Schleicher E, Bigalke B et al (2014) Expression of platelet-bound stromal-cell derived factor-1 (SDF-1) and number of CD34(+) progenitor cells in patients with congestive heart failure. Platelets 25:409–415

    Article  CAS  PubMed  Google Scholar 

  37. Lee SH, Wolf PL, Escudero R et al (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633

    Article  CAS  PubMed  Google Scholar 

  38. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    Article  CAS  PubMed  Google Scholar 

  39. Yndestad A, Damas JK, Oie E et al (2007) Role of inflammation in the progression of heart failure. Curr Cardiol Rep 9:236–241

    Article  PubMed  Google Scholar 

  40. Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C; (discussion 38C–40C)

    Article  CAS  PubMed  Google Scholar 

  41. Deswal A, Petersen NJ, Feldman AM et al (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103:2055–2059

    Article  CAS  PubMed  Google Scholar 

  42. Santiago B, Baleux F, Palao G et al (2006) CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans. Arthritis Res Ther 8:R43

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wang A, Guilpain P, Chong BF et al (2010) Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis Rheum 62:3436–3446

    Article  PubMed  Google Scholar 

  44. Nanki T, Hayashida K, El-Gabalawy HS et al (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4 + T cell accumulation in rheumatoid arthritis synovium. J Immunol 165:6590–6598

    Article  CAS  PubMed  Google Scholar 

  45. Calderon TM, Eugenin EA, Lopez L et al (2006) A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol 177:27–39

    Article  CAS  PubMed  Google Scholar 

  46. Krumbholz M, Theil D, Cepok S et al (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129:200–211

    Article  PubMed  Google Scholar 

  47. Weiss JM, Cufi P, Bismuth J et al (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218:373–381

    Article  CAS  PubMed  Google Scholar 

  48. Banisadr G, Skrzydelski D, Kitabgi P et al (2003) Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur J Neurosci 18:1593–1606

    Article  PubMed  Google Scholar 

  49. Wei SG, Zhang ZH, Yu Y et al (2012) Central actions of the chemokine stromal cell-derived factor 1 contribute to neurohumoral excitation in heart failure rats. Hypertension 59:991–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. K. Liu, S. Yang, M. Hou, T. Chen, J. Liu, and B. Yu state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Yu MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Yang, ., Hou, M. et al. Increase of circulating stromal cell-derived factor-1 in heart failure patients. Herz 40 (Suppl 1), 70–75 (2015). https://doi.org/10.1007/s00059-014-4169-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4169-z

Keywords

Schlüsselwörter

Navigation