Skip to main content
Log in

Effects of customized resin base on bonding strength of spherical self-ligating brackets

Auswirkungen einer individuellen Kunststoffbasis auf die Haftfestigkeit von sphärischen selbstligierenden Brackets

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

Fabricating resin bases has become an easy and economical method to achieve the customization of brackets. This study aimed to assess the effect of the resin base on bonding strength of spherical self-ligating brackets.

Methods

A defined amount of adhesive was bonded to the bracket base and constituted the new resin base. The thickness of the adhesive was measured and controlled at 0.5, 1.0, 1.5 and 2.0 mm, and a group without a resin base was used as a control. Sixty extracted human premolars were randomly divided into five groups. The brackets in each group were bonded to the specimen, and debonding tests were conducted. The shear bond strength (SBS) was calculated according to the measured debonding force in relation to the base area. The adhesive remnant index (ARI) score and the residual location of the fractured resin base were recorded. Enamel damage was also analyzed by scanning electron microscopy. After assessing for data normality and homogeneity, statistical comparisons between the groups and correlations among parameters were determined. P < 0.05 was regarded as significant.

Results

The correlation analysis revealed an inverse correlation between the resin base thickness and the SBS (Coeff = −0.719, P < 0.01). The highest SBS was 9.33 MPa, in the control group, which was significantly greater than the lowest SBS (6.03 MPa), in the 2.0-mm group (P < 0.05). Multiple comparisons analysis revealed no differences in SBS between the 1.0-, 1.5- and 2.0-mm groups. Nonparametric analysis found that only the ARI score in the 0.5-mm group (2.92) was significantly different (P < 0.05) from that in the control group (1.25). As the thickness of the resin base increased, the fractured resin base tended to remain at the bracket base, and the risk of enamel damage decreased.

Conclusions

As the thickness of the resin base increased, the bonding strength of the spherical bracket decreased. However, the required clinical bonding strength was still satisfied when the thickness was less than 2.0 mm. The existence of a resin base could protect the enamel surface from damage caused by debonding. The customization of spherical brackets by tailoring a resin base can be applied in clinical practice because of the clinically acceptable bonding strength.

Zusammenfassung

Zielsetzung

Die Herstellung von Kunststoffbasen hat sich zu einer einfachen und kostengünstigen Methode für die Individualisierung von Brackets entwickelt. Ziel dieser Studie war es, den Einfluss der Kunststoffbasis auf die Haftfestigkeit von sphärischen selbstligierenden Brackets zu untersuchen.

Methoden

Eine definierte Menge an Adhäsiv wurde auf die Bracketbasis geklebt und bildete die neue Kunststoffbasis. Die Dicke des Adhäsivs wurde bei 0,5, 1,0, 1,5 und 2,0 mm gemessen und kontrolliert, eine Gruppe ohne Kunststoffbasis diente als Kontrolle. Sechzig extrahierte menschliche Prämolaren wurden zufällig in 5 Gruppen eingeteilt. Die Brackets in jeder Gruppe wurden auf die Prüfkörper geklebt, und es wurden Debonding-Tests durchgeführt. Die Scherhaftfestigkeit (SBS) wurde anhand der gemessenen Debondingkraft im Verhältnis zur Basisfläche berechnet. Der Adhäsivrestindex (ARI) und die verbleibende Lage der frakturierten Kunststoffbasis wurden aufgezeichnet. Die Schmelzschädigung wurde auch mittels Rasterelektronenmikroskopie analysiert. Nachdem die Daten auf Normalität und Homogenität geprüft worden waren, wurden statistische Vergleiche zwischen den Gruppen und Korrelationen zwischen den Parametern ermittelt. Als signifikant wurde p < 0,05 angesehen.

Ergebnisse

Die Korrelationsanalyse ergab eine inverse Korrelation zwischen der Kunststoffbasisdicke und der SBS (Coeff = −0,719, p < 0.01). Die höchste SBS war mit 9,33 MPa in der Kontrollgruppe signifikant größer als die niedrigste SBS (6,03 MPa) in der 2,0-mm-Gruppe (p < 0,05). Eine Mehrfachvergleichsanalyse ergab keine Unterschiede in der SBS zwischen den 1,0-, 1,5- und 2,0-mm-Gruppen. Die nichtparametrische Analyse ergab, dass sich nur der ARI-Wert in der 0,5-mm-Gruppe (2,92) signifikant (p < 0,05) von dem der Kontrollgruppe (1,25) unterschied. Mit zunehmender Dicke neigte die frakturierte Kunststoffbasis dazu, an der Bracketbasis zu verbleiben, und das Risiko einer Zahnschmelzschädigung verminderte sich.

Schlussfolgerungen

Mit zunehmender Dicke der Kunststoffbasis nahm die Haftfestigkeit des sphärischen Brackets ab. Die geforderte klinische Haftfestigkeit war jedoch immer noch erfüllt, wenn die Dicke weniger als 2,0 mm betrug. Das Vorhandensein einer Kunststoffbasis könnte die Schmelzoberfläche vor Schäden durch Debonding schützen. Die Individualisierung sphärischer Brackets durch Anpassen einer Kunststoffbasis kann aufgrund der klinisch akzeptablen Haftfestigkeit in der klinischen Praxis angewendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  1. Mao XY, Chen DP (2009) The crown inclination of the teeth and its clinical value. Shanghai J Stomatol 18:656–660

    Google Scholar 

  2. Papageorgiou SN, Sifakakis I, Keilig L, Patcas R, Affolter S, Eliades T, Bourauel C (2016) Torque differences according to tooth morphology and bracket placement: a finite element study. Eur J Orthod 39(4):411–418

    Google Scholar 

  3. Mavroskoufis F, Ritchie GM (1980) Variation in size and form between left and right maxillary central incisor teeth. J Prosthet Dent 43(3):254–257

    Article  Google Scholar 

  4. Sung JW, Yub TK, Moon HK (2013) Debonding forces of three different customized bases of a lingual bracket system. Korean J Orthod 43(5):235–241

    Article  Google Scholar 

  5. Fillion D (2010) Clinical advantages of the Orapix-straight wire lingual technique. Int Orthod 8(2):125–151

    PubMed  Google Scholar 

  6. Andrews LF (1976) The straight-wire appliance, origin, controversy, commentary. J Clin Orthod 10(2):99–114

    PubMed  Google Scholar 

  7. Vardimon AD, Lambertz W (1986) Statistical evaluation of torque angles in reference to straight-wire appliance (SWA) theories. Am J Orthod 89(1):56–66

    Article  Google Scholar 

  8. Alexander RG (1983) The vari-simplex discipline. Part 1: Concept and appliance design. J Clin Orthod 17(6):380–392

    PubMed  Google Scholar 

  9. Eliades T (2002) Systemized orthodontic treatment mechanics. Eur J Orthod 24(2):215–216. https://doi.org/10.1093/ejo/24.2.215

    Article  Google Scholar 

  10. Kyung HM, Kim BC, Sung JH (1999) The effect of resin base thickness on shear bonding strength in lingual tooth surface. J Lingual Orthod 2(1):15

    Google Scholar 

  11. Kim JH, Hwang HS (1998) Shear bond strength and failure patterns according to the thickness of resin base in bracket bonding. Korean J Orthod 28(4):659–668

    Google Scholar 

  12. Fu ZR, Cai X, Tian FC (2016) Effect of base layer thickness of a self-adhesive resin on dentin bonding strength. Chin J Stomatol 51(2):93–96

    Google Scholar 

  13. Hiro T, Iglesia F, Andreu P (2008) Indirect bonding technique in lingual orthodontics: the HIRO system. Prog Orthod 9(2):34–45

    PubMed  Google Scholar 

  14. Arima VO, Mario VF, Valdrighi HC, Lucato AS, Santamaria M, Vedovello SA (2017) Debonding forces of different pads in a lingual bracket system. Dental Press J Orthod 22(4):34–40

    Article  Google Scholar 

  15. Wiechmann D, Rummel V, Thalheim A, Simon JS, Wiechmann L (2003) Customized brackets and archwires for lingual orthodontic treatment. Am J Orthod Dentofacial Orthop 124(5):593–599

    Article  Google Scholar 

  16. Sha HN, Choi SH, Yu HS, Cha CJ, Kim KM, Lin CP (2018) Debonding force and shear bond strength of an array of CAD/CAM-based customized orthodontic brackets, placed by indirect bonding—An In Vitro study. PLoS ONE 13(9):1–14

    Article  Google Scholar 

  17. Hobson RS, McCabe JF, Hogg SD (2001) Bond strength to surface enamel for different tooth types. Dent Mater 17(2):184–189

    Article  Google Scholar 

  18. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178

    Article  Google Scholar 

  19. Rüger D, Harzer W, Krisjane Z, Tansche E (2011) Shear bond strength after multiple bracket bonding with or without repeated etching. Eur J Orthod 33(5):521–527

    Article  Google Scholar 

  20. Shaymaa EE, Shaza MH, Noha FI (2014) Evaluation of stresses developed in different bracket-cement-enamel systems using finite element analysis with in vitro bond strength tests. Prog Orthod 15:331–338

    Google Scholar 

  21. Rastelli MC, Coelho U, Jimenez EO (2010) Evaluation of shear bond strength of brackets bonded with orthodontic fluoride-releasing composite resins. Dental Press J Orthod 15(3):106

    Article  Google Scholar 

  22. MacColl GA, Rossouw PE, Titley KC (1998) The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofacial Orthop 113(3):276–281

    Article  Google Scholar 

  23. Reynolds RI (1975) Composite filling materials as adhesives in orthodontics. Br Dent J 138(3):83–83

    Article  Google Scholar 

  24. Gwinnett AJ, Gorelick L (1977) Microscopic evaluation of enamel after debonding: Clinical application. Am J Orthod 71(6):651–665

    Article  Google Scholar 

  25. Romano FL, Tavares SW, Nouer DF, Consani S (2005) Shear bond strength of metallic orthodontic brackets bonded to enamel prepared with self-etching primer. Angle Orthod 75(5):849–853

    PubMed  Google Scholar 

  26. Arash V, Naghipour F, Ravadgar M, Karkhah A, Barati MS (2017) Shear bond strength of ceramic and metallic orthodontic brackets bonded with self-etching primer and conventional bonding adhesives. Electron physician 9(1):3584–3591

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (81371111; 81900973); the Natural Science Fund of Guangdong Province (2018A030313173); the Medical Research Fund of the Guangzhou Woman and Children’s Center (YIP-2018-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He DDS, MS, PhD.

Ethics declarations

Conflict of interest

L. Ji, Z. Chen, C.‑h. Liao, S.‑f. Hu, Z.‑x. Luo, B.‑w. Lian and H. He state that they have no competing interests.

Ethical standards

Ethical approval was obtained from the IEC for Clinical Research and Animal Trials of the First Affiliated Hospital of Sun Yat-sen University ([2020]315-1).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors L. Ji (methodology, investigation, writing of the original draft) and Z. Chen (conceptualization, data curation, writing of the review, and editing) contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Chen, Z., Liao, Ch. et al. Effects of customized resin base on bonding strength of spherical self-ligating brackets . J Orofac Orthop 83, 108–116 (2022). https://doi.org/10.1007/s00056-021-00329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00329-8

Keywords

Schlüsselwörter

Navigation