Skip to main content
Log in

Relationship between pterygomaxillary fissure morphology and maxillary/mandibular position

A cone beam computed tomography assessment

Beziehung zwischen der Morphologie der Fissura pterygomaxillaris und der Position von Ober‑/Unterkiefer

Eine Untersuchung mittels digitaler Volumentomographie

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the possible correlation between maxillary and mandibular positioning via cephalometric analysis with pterygomaxillary fissure (PMF) morphology using cone beam computed tomography (CBCT).

Methods

In this study, CBCT images from 825 individuals (448 female, 377 male; age range was 18-91 years with this cohort) were analyzed; PMF length and width were measured. Three-dimensional cephalometric analysis was also performed using cephalometric analysis software. The landmarks and measurements in relation to maxillary and mandibular positions were identified and performed for the cephalometric analysis. Analysis of variance (ANOVA) was used for comparison of the parameters, while the Bonferroni test was used for multiple comparisons. Pearson’s test was also used to assess the correlations between the parameters.

Results

The results showed that males had significantly larger PMF length (p < 0.001) and width (p < 0.001) compared to females. The mean PMF length was 17.7 mm (standard deviation [SD] 3.2 mm) for right and 17.7 mm (SD 3.3 mm) for left but were not significantly different (p > 0.05). In terms of the cephalometric measurements, a significant correlation was found between upper central incisor (U1toAperp2D) and posterior facial height (PostFaceHtSGo2D) and PMF length, while correlations were found between PMF width and several cephalometric parameters such as lower lip (LwLiptoEPln2D and LwLiptoHLine2D) and occlusal plane (OPtoFHAng2D) (p < 0.05).

Conclusion

A significant relationship was observed between PMF morphology and the position of the maxilla or mandible. PMF lengths and widths were larger in males than females. Posteroanterior maxillary and mandibular lengths and posterior facial height are associated with PMF length and width.

Zusammenfassung

Zielsetzung

Ziel dieser Studie war die Untersuchung einer möglichen Korrelation zwischen Ober- und Unterkieferposition und der Morphologie der Fissura pterygomaxiallis (PMF). Die Ober- und Unterkieferposition wurde mittels kephalometrischer Analyse ermittelt, während die Morphologie der PMF mit Hilfe der digitalen Volumentomographie (DVT) untersucht wurde.

Methoden

DVT-Bilder von 825 Probanden (448 weiblich, 377 männlich; Altersbereich 18–91 Jahre) wurden analysiert, PMF-Länge und -Breite wurden gemessen. Dreidimensionale kephalometrische Analysen wurde zudem mit einer kephalometrischen Analysesoftware durchgeführt. Dazu wurden die Landmarken und Messungen in Bezug auf die Kiefer- und Unterkieferpositionen identifiziert. Die Varianzanalyse (ANOVA) wurde für den Vergleich der Parameter verwendet, der Bonferroni-Test für Mehrfachvergleiche. Der Pearson-Test wurde außerdem zur Beurteilung der Korrelationen zwischen den Parametern verwendet.

Ergebnisse

Die Ergebnisse zeigten, dass die männlichen Probanden im Vergleich zu den weiblichen Probanden eine signifikant größere PMF-Länge (p < 0,001) und Breite (p < 0,001) aufwiesen. Die mittlere PMF-Länge betrug 17,7 mm (Standardabweichung [SD] 3,2 mm) für die rechte und 17,7 mm (SD 3,3 mm) für die linke Seite, wobei die Unterschiede nicht signifikant waren (p < 0,05). Bei den kephalometrischen Messungen zeigte sich eine signifikante Korrelation zwischen dem oberen zentralen Schneidezahn (U1toAperp2D) und der hinteren Gesichtshöhe (PostFaceHtSGo2D) und der PMF-Länge, während sich Korrelationen zwischen der PMF-Breite und verschiedenen kephalometrischen Parametern wie Unterlippe (LwLiptoEPln2D und LwLiptoHLine2D) und Okklusionsebene (OPtoFHAng2D) fanden (p < 0,05).

Schlussfolgerung

Beobachtet wurde ein signifikanter Zusammenhang zwischen der PMF-Morphologie und der Position des Ober- bzw. Unterkiefers. Die PMF-Längen und -Breiten waren bei den Männern größer als bei den Frauen. Es bestand eine Assoziation zwischen posteroanteriorer Ober- und Unterkieferlänge sowie posteriorer Gesichtshöhe und PMF-Länge und -Breite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1

Similar content being viewed by others

References

  1. Andria LM, Reagin KB, Leite LP, King LB (2004) Statistical evaluation of possible factors affecting the sagittal position of the first permanent molar in the maxilla. Angle Orthod 74:220–225

    PubMed  Google Scholar 

  2. Baccetti T, Reyes BC, McNamara JA Jr (2005) Gender differences in class III malocclusion. Angle Orthod 75:510–520

    PubMed  Google Scholar 

  3. Breeze J, Verea Linares C, Stockton P (2016) Is an osteotome necessary for pterygomaxillary dysjunction or dysjunction through the tuberosity during Le Fort I osteotomy? A systematic review. Br J Oral Maxillofac Surg 54:248–252

    Article  PubMed  Google Scholar 

  4. Carlson DS (2005) Theories of craniofacial growth in the postgenomic era. Semin Orthod 11:172183

    Google Scholar 

  5. Cevidanes LH, Franco AA, Gerig G, Proffit WR, Slice DE, Enlow DH et al (2005) Comparison of relative mandibular growth vectors with high-resolution 3‑dimensional imaging. Am J Orthod Dentofacial Orthop 128:27–34

    Article  PubMed  Google Scholar 

  6. Chin YP, Leno MB, Dumrongwongsiri S, Chung KH, Lin HH, Lo LJ (2017) The pterygomaxillary junction: an imaging study for surgical information of LeFort I osteotomy. Sci Rep 30:9953

    Article  Google Scholar 

  7. Dargaud J, Cotton F, Buttin R, Morin A (2003) The maxillary sinus: evolution and function in aging. Morphologie 87:17–22

    PubMed  Google Scholar 

  8. Deljo E, Filipovic M, Babacic R, Grabus J (2012) Correlation analysis of the hyoid bone position in relation to the cranial base, mandible and cervical part of vertebra with particular reference to bimaxillary relations/teleroentgenogram analysis. Acta Inform Med 20:25–31

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dibbets J (1996) Morphological associations between the Angle classes. Eur J Orthod 18:111–118

    Article  PubMed  Google Scholar 

  10. Ghoneima A, Abdel-Fattah E, Hartsfield J, El-Bedwehi A, Kamel A, Kula K (2011) Effects of rapid maxillary expansion on the cranial and circummaxillary sutures. Am J Orthod Dentofacial Orthop 140:510–519

    Article  PubMed  PubMed Central  Google Scholar 

  11. Graber LW (1978) Hyoid changes following orthopedic treatment of mandibular prognathism. Angle Orthod 48:33–38

    PubMed  Google Scholar 

  12. Hwang SH, Seo JH, Joo YH, Kim BG, Cho JH, Kang JM (2011) An anatomic study using three-dimensional reconstruction for pterygopalatine fossa infiltration via the greater palatine canal. Clin Anat 24:576–582

    Article  PubMed  Google Scholar 

  13. Icen M, Orhan K (2019) Cone-beam computed tomography evaluation of the pterygomaxillary fissure and pterygopalatine fossa using 3D rendering programs. Surg Radiol Anat 41:513–522

    Article  PubMed  Google Scholar 

  14. Iseri H, Solow B (1995) Average surface remodeling of the maxillary base and the orbital floor in female subjects from 8 to 25 years. An implant study. Am J Orthod Dentofacial Orthop 107:48–57

    Article  PubMed  Google Scholar 

  15. Krey KF, Dannhauer KH, Hierl T (2015) Morphology of open bite. J Orofac Orthop 76:213–224

    Article  PubMed  Google Scholar 

  16. Kumar Jena A, Duggal R (2011) Hyoid bone position in subjects with different vertical jaw dysplasias. Angle Orthod 81:81–85

    Article  Google Scholar 

  17. Lieberman D (2011) The evolution of the human head. Harvard University Press, Cambridge

    Book  Google Scholar 

  18. Moiseiwitsch J, Irvine T (2001) Clinical significance of the length of the pterygopalatine fissure in dental anesthesia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:325–328

    Article  PubMed  Google Scholar 

  19. Moss ML (1997) The functional matrix hypothesis revisited. 1. the role of mechanotransduction. Am J Orthod Dentofacial Orthop 112:8–11

    Article  PubMed  Google Scholar 

  20. Moss ML (1997) The functional matrix hypothesis revisited 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop 112:221–226

    Article  PubMed  Google Scholar 

  21. Moss ML, Salentijn L (1969) The capsular matrix. Am J Orthod 56:474–490

    Article  PubMed  Google Scholar 

  22. Moss ML, Salentijn L (1969) The primary role of functional matrices in facial growth. Am J Orthod 55:566–577

    Article  PubMed  Google Scholar 

  23. Oliveira GQV, Rossi MA, Vasconcelos TV, Neves FS, Crusoé-Rebello I (2017) Cone beam computed tomography assessment of the pterygomaxillary region and palatine canal for Le Fort I osteotomy. Int J Oral Maxillofac Surg 46:1017–1023

    Article  PubMed  Google Scholar 

  24. Orhan K, Gorurgoz C, Akyol M, Ozarslanturk S, Avsever H (2018) An anatomical variant: evaluation of accessory canals of the canalis sinuosus using cone beam computed tomography. Folia Morphol 77:551–557

    Article  Google Scholar 

  25. Orhan K, Sakul BU, Oz U, Bilecenoglu B (2011) Evaluation of the pterygoid hamulus morphology using cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:e48–e55

    Article  PubMed  Google Scholar 

  26. Orra S, Tierney WS, Capone AC, Gharb BB, Papay FA, Doumit G (2017) Relevant surgical anatomy of pterygomaxillary dysjunction in Le Fort III osteotomy. Plast Reconstr Surg 139:701–709

    Article  PubMed  Google Scholar 

  27. Oz U, Orhan K, Aksoy S, Ciftci F, Özdoğanoğlu T, Rasmussen F (2011) Association between pterygoid hamulus length and apnea hypopnea index in patients with obstructive sleep apnea: a combined three-dimensional cone beam computed tomography and polysomnographic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:e48–e55

    PubMed  Google Scholar 

  28. Oz U, Rubenduz M (2011) Craniofacial differences between skeletal Class II and skeletal Class I malocclusions according to vertical classification. Int J Stomatol Occlusion Med 4:105–111

    Article  Google Scholar 

  29. Pan J‑Y, Chou S‑T, Chang H‑P, Liu P‑H (2006) Morphometric analysis of the mandible in subjects with Class III malocclusion. The Kaohsiung Journal of Medical Sciences 22:331–338

    Article  PubMed  Google Scholar 

  30. Piva LM, Brito HH, Leite HR, O’Reilly M (2005) Effects of cervical headgear and fixed appliances on the space available for maxillary second molars. Am J Orthod Dentofacial Orthop 128:366–371

    Article  PubMed  Google Scholar 

  31. Stojcev Stajcić L, Gacić B, Popović N, Stajcić Z (2010) Anatomical study of the pterygopalatine fossa pertinent to the maxillary nerve block at the foramen rotundum. Int J Oral Maxillofac Surg 39:493–496

    Article  PubMed  Google Scholar 

  32. Tashi S, Purohit BS, Becker M, Mundada P (2016) The pterygopalatine fossa: imaging anatomy, communications, and pathology revisited. Insights Imaging 7:589–599

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tausche E, Deeb W, Hansen L, Hietschold V, Harzer W, Schneider M (2009) CT analysis of nasal volume changes after surgically-assisted rapid maxillary expansion. J Orofac Orthop 70:306–17. https://doi.org/10.1007/s00056-009-9910-5

    Article  PubMed  Google Scholar 

  34. Triftshauser R, Walters RD (1976) Cervical retraction of the maxillae in the Macaca mulatta monkey using heavy orthopedic force. Angle Orthod 46:37–46

    PubMed  Google Scholar 

  35. Wieslander L, Tandläkare L (1963) The effect of orthodontic treatment on the concurrent development of the craniofacial complex. Am J Orthod 49:15–27

    Article  Google Scholar 

  36. Wieslander L (1975) Early or late cervical traction therapy of Class II malocclusion in the mixed dentition. Am J Orthod 67:432–439

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Simon Thompson for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Oz DDS PhD.

Ethics declarations

Conflict of interest

M. Icen, K. Orhan, U. Oz, S. Horasan and H. Avsever declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. Ethical approval was obtained from the Near East University Scientific Research Ethics Committee (IRB approval number 18/2011-16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Icen, M., Orhan, K., Oz, U. et al. Relationship between pterygomaxillary fissure morphology and maxillary/mandibular position. J Orofac Orthop 81, 183–191 (2020). https://doi.org/10.1007/s00056-019-00215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00215-4

Keywords

Schlüsselwörter

Navigation