Skip to main content
Log in

Torque efficiency of a customized lingual appliance

Performance of wires with three different ligature systems

Ausmaß der Torqueübertragung einer individualisierten lingualen Apparatur

Performance von Drähten mit 3 verschiedenen Ligatursystemen

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

Torque control in lingual orthodontics is key to obtain optimal esthetic results. The aim of this in vitro experimental study was to verify the efficiency of the ligature–archwire–slot system in torque control using a customized lingual appliance.

Methods

An idealized cast with eight extracted human teeth was created and a set of customized lingual brackets was obtained. Tests were performed with the following wires: 0.016″ × 0.022″ nickel-titanium (NiTi), 0.016″ × 0.024″ stainless steel (SS), 0.017″ × 0.025″ βIII titanium (βIIITi), 0.0182″ × 0.0182″ βIIITi, 0.018″ × 0.025″ SS, 0.018″ × 0.025″ NiTi, 0.018″ × 0.025″ βIIITi, and three types of ligatures were tested using a universal testing machine to calculate the efficiency in torque control. A blind statistical analysis was performed.

Results

Based on post hoc multiple comparisons, differences were found for two of the three ligatures when using the 0.016″ × 0.022″ NiTi wires (p < 0.001 for both ligatures). When considering all ligatures, 0.018″ × 0.025″ SS and 0.018″ × 0.025″ βIIITi were significantly different from all other wires (p < 0.001 in all cases). With a moment of 5 Nmm, the 0.016″ × 0.022″ NiTi wire developed median angles of 26.7, 29.8, and 38.7° with the three ligatures, respectively, while the 0.018″ × 0.025″ SS developed median angles of 12.9, 10.7, and 12.7°, respectively.

Conclusions

The ligature type and geometry did not affect the efficiency of torque control, except for the 0.016″ × 0.022″ NiTi wire. The wires generating the greatest moments were the 0.018″ × 0.025″ SS and 0.018″ × 0.025″ βIIITi.

Zusammenfassung

Zweck

Die Torquekontrolle in der lingualen Kieferorthopädie ist ein Schlüsselfaktor, um optimale ästhetische Ergebnisse zu erzielen. Ziel dieser experimentellen In-vitro-Studie war es, die Effizienz des Ligatur-Bogen-Slot Systems bei der Torquekontrolle mit einer individualisierten Lingualapparatur zu überprüfen.

Methoden

Ein idealisiertes Modell mit 8 extrahierten menschlichen Zähnen wurde erstellt und ein Satz individualisierter lingualer Brackets wurde angefertigt. Es wurden Tests mit den folgenden Drähten durchgeführt: 0,016″ × 0,022″ Nickel-Titan (NiTi), 0,016″ × 0,024″ Edelstahl (SS), 0,017″ × 0,025″ βIII-Titan (βIIITi), 0,0182″ × 0,0182″ βIIITi, 0,018″ × 0,025″ SS, 0,018″ × 0,025″ NiTi, 0,018″ × 0,025″ βIIITi. Drei Arten von Ligaturen wurden mit einer Universalprüfmaschine getestet, um das Ausmaß der Torquekontrolle zu berechnen. Eine blinde statistische Analyse wurde durchgeführt.

Ergebnisse

Basierend auf post hoc durchgeführten Mehrfachvergleichen wurden bei der Verwendung der 0,016″ × 0,022″ NiTi-Drähte (p < 0,001 für beide Ligaturen) Unterschiede für 2 der 3 Ligaturen nachgewiesen. Bei Betrachtung aller Ligaturen unterschieden sich 0,018″ × 0,025″ SS und 0,018″ × 0,025″ βIIITi signifikant von allen anderen Drähten (p < 0,001 in allen Fällen). Bei einem Drehmoment von 5 Nmm entwickelte der 0,016″ × 0,022″ NiTi-Draht Medianwinkel von 26,7, 29,8 bzw. 38,7° mit den 3 Ligaturen, der 0,018″ × 0,025″ SS-Draht erzielte dagegen Medianwinkel von 12,9, 10,7 bzw. 12,7°.

Schlussfolgerungen

Ligaturtyp und Geometrie hatten – mit Ausnahme des 0,016″ × 0,022″ NiTi-Drahts – keinen Einfluss auf die Effizienz der Torqueübertragung. Die Drähte, welche die größten Drehmomente erzeugten, waren 0,018″ × 0,025″ SS und 0,018″ × 0,025″ βIIITi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5

Similar content being viewed by others

References

  1. Archambault A, Major TW, Carey JP, Heo G, Badawi H, Major PW (2010) A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets. Angle Orthod 80:884–889

    Article  Google Scholar 

  2. Bantleon HP, Droschl H (1988) Front torque using a partial arch technic. J Orofac Orthop 49:203–212

    Google Scholar 

  3. Burstone CJ (1966) The mechanics of the segmented arch techniques. Angle Orthod 36:99–120

    PubMed  Google Scholar 

  4. Creekmore TDTD (1979) Creekmore on torque. J Clin Orthod 13:305–310

    PubMed  Google Scholar 

  5. Daratsianos N, Bourauel C, Fimmers R, Jäger A, Schwestka-Polly R (2016) In vitro biomechanical analysis of torque capabilities of various 0.018″ lingual bracket-wire systems: total torque play and slot size. Eur J Orthod 38:459–469

    Article  Google Scholar 

  6. Fulmer DT, Kuftinec MM (1989) Cephalometric appraisal of patients treated with fixed lingual orthodontic appliances: historic review and analysis of cases. Am J Orthod Dentofacial Orthop 95:514–520

    Article  Google Scholar 

  7. Germane N, Bentley BE Jr, Isaacson RJ (1989) Three biologic variables modifying faciolingual tooth angulation by straight-wire appliances. Am J Orthod Dentofacial Orthop 96:312–319

    Article  Google Scholar 

  8. Gmyrek H, Bourauel C, Richter G, Harzer W (2002) Torque capacity of metal and plastic brackets with reference to materials, application, technology and biomechanics. J Orofac Orthop 63:113–128

    Article  Google Scholar 

  9. Harzer W, Bourauel C, Gmyrek H (2004) Torque capacity of metal and polycarbonate brackets with and without a metal slot. Eur J Orthod 26:435–441

    Article  Google Scholar 

  10. Hemingway R, Williams RL, Hunt JA, Rudge SJ (2001) The influence of bracket type on the force delivery of Ni-Ti archwires. Eur J Orthod 23:233–241

    Article  Google Scholar 

  11. Hong RK, Lee JG, Sunwoo J, Lim SM (2000) Lingual orthodontics combined with orthognathic surgery in a skeletal Class III patient. J Clin Orthod 34:403–408

    PubMed  Google Scholar 

  12. Huang Y, Keilig L, Rahimi A, Reimann S, Eliades T, Jäger A (2009) Numeric modeling of torque capabilities of self-ligating and conventional brackets. Am J Orthod Dentofacial Orthop 136:638–643

    Article  Google Scholar 

  13. Inami T, Nakano Y, Miyazawa K, Tabuchi M, Goto S (2016) Adult skeletal Class II high-angle case treated with a fully customized lingual bracket appliance. Am J Orthod Dentofacial Orthop 150:679–691

    Article  Google Scholar 

  14. Lossdörfer S, Bieber C, Schwestka-Polly R, Wiechmann D (2014) Analysis of the torque capacity of a completely customized lingual appliance of the next generation. Head Face Med 10:4

    Article  Google Scholar 

  15. Major TW, Carey JP, Nobes DS, Heo G, Major PW (2011) Mechanical effects of third-order movement in self-ligated brackets by the measurement of torque expression. Am J Orthod Dentofacial Orthop 139:e31–44

    Article  Google Scholar 

  16. Mathew RN, Katyal A, Shetty A, Nayak KUS (2016) Effect of increasing the vertical intrusive force to obtain torque control in lingual orthodontics: a three-dimensional finite element method study. Indian J Dent Res 27:163–167

    Article  Google Scholar 

  17. Miethke RR, Melsen B (1999) Effect of variation in tooth morphology and bracket position on first and third order correction with preadjusted appliances. Am J Orthod 116:329–335

    Article  Google Scholar 

  18. Morina E, Eliades T, Pandis N, Jäger A, Bourauel C (2008) Torque expression of self-ligating brackets compared with conventional metallic, ceramic, and plastic brackets. Eur J Orthod 30:233–238

    Article  Google Scholar 

  19. Papageorgiou SN, Sifakakis I, Doulis I, Eliades TT, Bourauel C (2016) Torque efficiency of square and rectangular archwires into 0.018 and 0.022 in conventional brackets. Prog Orthod 17:5

    Article  Google Scholar 

  20. Pauls A, Nienkemper M, Schwestka-Polly R, Wiechmann D (2017) Therapeutic accuracy of completely customized lingual appliance WIN: A retrospective cohort study. J Orofac Orthop 78:52–61

    Article  Google Scholar 

  21. R Core Team (2018) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (http://www.R-project.org/)

    Google Scholar 

  22. Reitan K (1964) Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod 34:244–255

    Google Scholar 

  23. Schudy GF, Schudy FF (1989) Intrabracket space and interbracket distance: critical factors in clinical orthodontics. Am J Orthod Dentofacial Orthop 96:281–294

    Article  Google Scholar 

  24. Sebanc J, Brantley WA, Pincsak JJ, Conover JP (1984) Variability of effective torque as a function of edge bevel on orthodontic arch wires. Am J Orthod 86:43–51

    Article  Google Scholar 

  25. Sifakakis I, Pandis N, Makou M, Eliades T, Katsaros C, Bourauel C (2013) A comparative assessment of torque generated by lingual and conventional brackets. Eur J Orthod 35:375–380

    Article  Google Scholar 

  26. Smith JR, Gorman JC, Kurz C, Dunn RM (1986) Keys to success in lingual therapy. Part 1. J Clin Orthod 20:252–261

    PubMed  Google Scholar 

  27. Wei L, Qiguo R, Jiuxiang L, Baohua X (2009) Torque control of the maxillary incisors in lingual and labial orthodontics: a 3‑dimensional finite element analysis. Am J Orthod Dentofacial Orthop 135:316–322

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank and remember Professor Marco Capurro: his great contribution as a man, a teacher and a researcher will last in our hearts. We also would like to thank 3M Oral Care for the kind support, assistance and the materials provided for the experiments.

Funding

This research did not receive any specific grant from funding agencies in public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Drago MSc, DDS.

Ethics declarations

Conflict of interest

R. Stradi has a consultancy agreement with 3M Unitek. M. Migliorati, D. Poggio, S. Drago, A. Lagazzo, F. Barberis and A. Silvestrini-Biavati declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorati, M., Poggio, D., Drago, S. et al. Torque efficiency of a customized lingual appliance. J Orofac Orthop 80, 304–314 (2019). https://doi.org/10.1007/s00056-019-00190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00190-w

Keywords

Schlüsselwörter

Navigation