Skip to main content
Log in

Transcriptome response of cold-pretreated Pantoea agglomerans KSC03 to exogenous green leaf volatile E-2-hexenal

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Green leaf volatiles (GLVs) are initially formed in the form of aldehydes, and then converted to alcohol and ester forms by the enzymes from plants. However, it remains unclear whether and how plant microbes work with aldehyde GLVs, especially under stressed conditions. Here, transcriptional response of cold-pretreated Pantoea agglomerans KSC03, an endophyte from Astragalus membranaceus var. mongholicus roots to E-2-hexenal was investigated and verified by real-time PCR and GC–MS after the time length of cold pretreatment was optimized. The results revealed that a 12-h cold stress was the most effective for KSC03 to trigger positive response to E-2-hexenal as far as the cell density was concerned. Transcriptome analysis showed that differentially expressed genes induced by E-2-hexenal were enriched in the following pathways: ABC transporter, phosphotransferase system, nitrotoluene degradation, and metabolisms of hexose and butanoate. Amongst, the upregulated transcription of gene3176 and gene4782 encoding N-ethylmaleimide reductase and diacetyl reductase in E-2-hexenal treatment was confirmed by real-time PCR. So did the enhanced production of 2,3-butanediol triggered by E-2-hexenal. Additionally, the transcription of gene3176 and gene4782 and the production of 2,3-butanediol chronologically reached their peaks in the E-2-hexenal-treated cells at the stationary phase. The results also indicated that exogenous E-2-hexanal passed through the cell membrane at the lag/early logarithmic phase and could not be utilized directly. In summary, E-2-hexenal triggers the positive cell response of cold-pretreated KSC03 at the transcriptional and metabolic levels in a time-length dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal S, Begum N, Zhao H, Fang Z, Lou L, Cai Q (2017) Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.). J Appl Microbiol 123:498–510

    CAS  PubMed  Google Scholar 

  • Ahmad T, Farooq S, Mirza DN et al (2021) Insights into the endophytic bacterial microbiome of Crocus sativus: functional characterization leads to potential agents that enhance the plant growth, productivity, and key metabolite content. Microb Ecol. https://doi.org/10.1007/s00248-021-01810-y

    Article  PubMed  Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    CAS  PubMed  Google Scholar 

  • Ameye M, Allmann S, Verwaeren J et al (2018) Green leaf volatile production by plants: a meta-analysis. New Phytol 220:666–683

    CAS  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  PubMed  Google Scholar 

  • Bonaterra A, Mari M, Casalini L, Montesinos E (2003) Biological control of Monilinialaxa and Rhizopus stoloniferin postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int J Food Microbiol 84:93–104

    PubMed  Google Scholar 

  • Checcucci A, Maida I, Bacci G et al (2017) Is the plant-associated microbiota of Thymus spp. adapted to plant essential oil? Res Microbiol 168:276–282

    CAS  PubMed  Google Scholar 

  • Cheng LQ, Na JR, Bang MH et al (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69:218–224

    CAS  PubMed  Google Scholar 

  • Cherif-Silini H, Thissera B, Bouket AC et al (2019) Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci 20:3989

    CAS  PubMed Central  Google Scholar 

  • Cho SM, Kim YH, Anderson AJ, Kim YC (2013) Nitric oxide and hydrogen peroxide production are involved in systemic drought tolerance induced by 2R,3R-butanediol in Arabidopsis thaliana. Plant Pathol J 29:427–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cofer TM, Engelberth M, Engelberth J (2018) Green leaf volatiles protect maize (Zeamays) seedlings against damage from cold stress. Plant Cell Environ 41:1673–1682

    CAS  PubMed  Google Scholar 

  • Curtius T, Franzen H (1914) Über die chemischen Bestandteile grüner Pflanzen. Über die flüchtigen Bestandteile der Hainbuchenblätter. Eur J Org Chem 404:93–130

    CAS  Google Scholar 

  • D’Alessandro M, Erb M, Ton J et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    CAS  PubMed  Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A et al (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49:194–207

    CAS  PubMed  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P et al (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841b

    PubMed  Google Scholar 

  • Engelberth M, Selman SM, Engelberth J (2019) In-cold exposure to Z-3-hexenal provides protection against ongoing cold stress in Zea mays. Plants (basel) 8:165

    CAS  Google Scholar 

  • Gao H, Sheng J, Bai X et al (2020) Composition and function of endophytic bacteria residing the root tissue of Astragalus mongholicus in Hunyuan, Shanxi, China. Acta Microbiol Sin 60:1638–1647 (in Chinese)

    Google Scholar 

  • Gao Y, Zhou X, Zhang MM et al (2021) Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 105:2455–2472

    CAS  PubMed  Google Scholar 

  • Gebhard S, Busby JN, Fritz G et al (2014) Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J Bacteriol 196:3472–3481

    PubMed  PubMed Central  Google Scholar 

  • He J, Fandino RA, Halitschke R et al (2019) An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proc Natl Acad Sci USA 116:14651–14660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jochimsen B, Lolle S, McSorley FR et al (2011) Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proc Nat Acad Sci USA 108:11393–11398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson E, Shin JH, Westman G et al (2018) In silico and in vitro studies of the reduction of unsaturatedα, β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid—Important steps towards biobased production of adipic acid. PLoS ONE 13:e0193503

    PubMed  PubMed Central  Google Scholar 

  • Keshri J, Krouptiski Y, Abu-Fani L et al (2019) Dynamics of bacterial communities in alfalfa and mung bean sprouts during refrigerated conditions. Food Microbiol 84:103261

    CAS  PubMed  Google Scholar 

  • Kim HM, Yoon CK, Ham HI, Seok YJ, Park YH (2018) Stimulation of Vibrio vulnificus pyruvate kinase in the presence of glucose to cope with H2O2 stress generated by its competitors. Front Microbiol 9:1112

    PubMed  PubMed Central  Google Scholar 

  • Kunishima M, Yamauchi Y, Mizutani M (2016) Identification of (Z)-3:(E)-2-hexenal isomerases essential to the production of the leaf aldehyde in plants. J Biol Chem 291:14023–14033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Wilks C, Antonescu V, Charles R (2019) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 3:421–432

    Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Luziatelli F, Ficca AG, Cardarelli M et al (2020) Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms 8:153

    CAS  PubMed Central  Google Scholar 

  • Ma W, Zhao L, Zhao W, Xie Y (2019) (E)-2-Hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. J Agric Food Chem 67:1138–1145

    CAS  PubMed  Google Scholar 

  • Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012) Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE 7:e36433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizugaki M, Unuma T, Shiraishi T, Nishimaki T, Yamanaka H (1981) Studies on the metabolism of unsaturated fatty acids. IV. N-Ethylmaleimide reducing activity in Escherichia coli K-12. Chem Pharm Bull (tokyo) 29:570–573

    CAS  Google Scholar 

  • Obata H, Muryoi N, Kawahara H, Nishiyama A (2004) Purification and characterization of uridine phosphorylase from the ice-nucleating bacterium, Pantoea agglomerans NBRC12686. Cryo Lett 25:195–204

    CAS  Google Scholar 

  • Ourique LJ, Rocha CC, Gomes RCD et al (2020) Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate. Bioprocess Biosyst Eng 43:1689–1701

    CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvageot N, Mokhtari A, Joyet P et al (2017) Enterococcus faecalis uses a phosphotransferase system permease and a host colonization-related ABC transporter for maltodextrin uptake. J Bacteriol 199:e00878-e916

    PubMed  PubMed Central  Google Scholar 

  • Schalk F, Gostinčar C, Kreuzenbeck NB et al (2021) The termite fungal cultivar Termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion. Mbio 12(3):e0355120

    PubMed  Google Scholar 

  • Schmittgen T, Livak K (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocol 3:1101–1108

    CAS  Google Scholar 

  • Shi R, McDonald L, Cui Q, Matte A, Cygler M, Ekiel I (2011) Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase. Proc Natl Acad Sci U S A 108:1302–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys KA, Batta AK, Koneru B (2015) Successful nonfreezing, subzero preservation of rat liver with 2,3-butanediol and type I antifreeze protein. J Surg Res 96:30–34

    Google Scholar 

  • Sun H, Kang B, Chai Z et al (2017) Characterization of root-associated microbiota in medicinal plants Astragalus membranaceus and Astragalus mongholicus. Ann Microbiol 67:587–599

    CAS  Google Scholar 

  • Tanaka T, Ikeda A, Shiojiri K et al (2018) Identification of a hexenal reductase that modulates the composition of green leaf volatiles. Plant Physiol 178:552–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thanh TN, Jürgen B, Bauch M et al (2010) Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol 87:2227–2235

    CAS  PubMed  Google Scholar 

  • Torres R, Solsona C, Viñas I et al (2014) Optimization of packaging and storage conditions of a freeze-dried Pantoea agglomerans formulation for controlling postharvest diseases in fruit. J Appl Microbiol 117:173–184

    CAS  PubMed  Google Scholar 

  • Umezawa Y, Shimada T, Kori A, Yamada K, Ishihama A (2008) The uncharacterized transcription factor YdhM is the regulator of the nemA gene, encoding N-ethylmaleimide reductase. J Bacteriol 190:5890–5897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivijs B, Moons P, Aertsen A, Michiels CW (2014) Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl Environ Microbiol 80:6054–6061

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Li X, Ma L et al (2018) Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J Exp Bot 69:5625–5635

    CAS  PubMed  Google Scholar 

  • Xie NZ, Chen XR, Wang QY et al (2017) Microbial routes to (2R,3R)-2,3-butanediol: recent advances and future prospects. Curr Top Med Chem 17:2433–2439

    CAS  PubMed  Google Scholar 

  • Yu S, Kim Y, Nam H et al (2010) Suppression of green and blue mold in postharvest mandarin fruit by treatment of Pantoea agglomerans 59–4. Plant Pathol J 26:353–359

    CAS  Google Scholar 

  • Zhou J, Li X, Chen Y, Dai CC (2017) De novo transcriptome assembly of Phomopsis liquidambari provides insights into genes associated with different lifestyles in rice (Oryza sativa L.). Front Plant Sci 8:121

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Open Project of Scientific Research, Zhejiang Chinese Medical University (grant number: ZYAOX2018016), National Key R&D Program of China (grant number: 2019YFC1710804), and the Collaborative Innovation Center of Astragali Radix Resource Industrialization and Internationalization (grant numbers: HQXTCXZX2016-002, -003, and -016).

Author information

Authors and Affiliations

Authors

Contributions

HS, HG, and GK contributed to the study conception and design, and performed material preparation, raw data collection and analysis. The supplemental experiment and data analysis were performed by XZ. The first draft of the manuscript was written by HS; HG and GK commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haifeng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research is not involved in human participants or animals.

Data availability

Raw reads have been deposited in GenBank with Bio Project code: PRJNA680186.

Code availability

No.

Additional information

Communicated by Günther Raspotnig.

Supplementary Information

Below is the link to the electronic supplementary material.

49_2021_367_MOESM1_ESM.doc

Supplementary file1 Figure S1 Electrophoresis of the amplification products of target genes. Figure S2 The retention times and characteristic ions of the chemical standards 2,3-butanediol (A) and E-2-hexenal (B), and total ion chromogram of a representative sample (C) (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Gao, H., Zuo, X. et al. Transcriptome response of cold-pretreated Pantoea agglomerans KSC03 to exogenous green leaf volatile E-2-hexenal. Chemoecology 32, 69–79 (2022). https://doi.org/10.1007/s00049-021-00367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-021-00367-z

Keywords

Navigation