Skip to main content
Log in

Vital residues-orientated rational design of butenolide inhibitors targeting Of ChtI

  • Brief Report
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

An effective approach for discovering small molecular inhibitors is the residues-oriented strategy based on enzyme analysis. In this study, we employed a rational approach to design and synthesize a library of butenolide analogues (Ia-f and IIa-f) targeting Trp107, utilizing reported piperonyl butenolide as lead compound. Notably, the most compounds IIa-f (R2 = NO2) exhibited slightly higher inhibitory potency against Of ChtI compared to compounds Ia-f (R2 = Br). Molecular mechanism studies unveiled a crucial hydrogen bond interaction between the NO2 group and Trp107, explaining the enhanced binding affinities. Compounds IIe and IIf, both bearing NO2 on the benzene ring at the R2 position, displayed the highest inhibitory activity, with Ki values of 0.87 and 0.68 μM, respectively. Our findings highlight the potential of designing inhibitors with high enzymatic activity by structurally optimizing compounds based on the distinct interaction modes with crucial residues in the binding cavity of Of ChtI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

References

  1. Jiao ZL, Su PP, Li Y, Zhao WJ, Yang LB, Sun CQ. et al. Identification and function analysis of chitinase 2 gene in housefly, Musca domestica. Comp Biochem Physiol, Part B: Biochem Mol Biol. 2022;259:110717–24. https://doi.org/10.1016/j.cbpb.2022.110717.

    Article  CAS  Google Scholar 

  2. Liu T, Zhu WX, Wang J, Zhou Y, Duan YW, Qu MB. et al. The deduced role of a chitinase containing two nonsynergistic catalytic domains. Acta Crystallogr, Sect D: Struct Biol. 2018;74:30–40. https://doi.org/10.1107/S2059798317018289.

    Article  CAS  Google Scholar 

  3. Shen SQ, Dong LL, Chen W, Wu RJ, Lu HZ, Yang Q. et al. Synthesis, optimization, and evaluation of glycosylated naphthalimide derivatives as efficient and selective insect β-N-acetylhexosaminidase OfHex1 inhibitors. J Agric Food Chem. 2019;67:6387–96. https://doi.org/10.1021/acs.jafc.9b02281.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang X, Kumar A, Liu T, Zhang KYJ, Yang Q. A novel scaffold for developing specific or broad-spectrum chitinase inhibitors. J Chem Inf Model. 2016;56:2413–20. https://doi.org/10.1021/acs.jcim.6b00615.

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Liu T, Duan YW, Lu XH, Yang Q. Microbial secondary metabolite, Phlegmacin B1, as a novel inhibitor of insect chitinolytic enzymes. J Agric Food Chem. 2017;65:3851–7. https://doi.org/10.1021/acs.jafc.7b01710.

    Article  CAS  PubMed  Google Scholar 

  6. Lu Q, Xu LP, Liu L, Zhou Y, Liu T, Song YX. et al. Lynamicin B is a potential pesticide by acting as a lepidoptera-exclusive chitinase inhibitor. J Agric Food Chem. 2021;69:14086–91. https://doi.org/10.1021/acs.jafc.1c05385.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao ZX, Chen W, Wang SM, Dong YH, Yang Q, Zhang JJ. Rational design of N-Methylcarbamoylguanidinyl derivatives as highly potent dual-target chitin hydrolase inhibitors for retarding growth of pest insects. J Agric Food Chem. 2023;71:2817–26. https://doi.org/10.1021/acs.jafc.2c07605.

    Article  CAS  PubMed  Google Scholar 

  8. Li WQ, Ding Y, Qi HT, Liu T, Yang Q. Discovery of natural products as multitarget inhibitors of insect chitinolytic enzymes through high-throughput screening. J Agric Food Chem. 2021;69:10830–7. https://doi.org/10.1021/acs.jafc.1c03629.

    Article  CAS  PubMed  Google Scholar 

  9. Han Q, Wu N, Li HL, Zhang JY, Li X, Deng MF. et al. A Piperine-based scaffold as a novel starting point to develop inhibitors against the potent molecular target Of ChtI. J Agric Food Chem. 2021;69:7534–44. https://doi.org/10.1021/acs.jafc.0c08119.

    Article  CAS  PubMed  Google Scholar 

  10. Pantoom S, Vetter IR, Prinz H, Suginta W. Potent family-18 chitinase inhibitors: X-ray structures, affinities, and binding mechanisms. J Biol Chem. 2011;286:24312–23. https://doi.org/10.1074/jbc.M110.183376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schüttelkopf AW, Andersen OA, Rao FV, Allwood M, Rush CL, Eggleston IM. et al. Bisdionin C-A rationally designed, submicromolar inhibitor of family 18 chitinases. ACS Med Chem Lett. 2011;2:428–32. https://doi.org/10.1021/ml200008b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han Q, Wu N, Liu YY, Zhang JY, Zhang RL, Li HL. et al. Piperonyl-tethered rhodanine derivatives potently inhibit chitinolytic enzymes of Ostrinia furnacalis. J Agric Food Chem. 2022;70:7387–99. https://doi.org/10.1021/acs.jafc.2c02091.

    Article  CAS  PubMed  Google Scholar 

  13. Dong YW, Hu S, Jiang X, Liu T, Ling Y, He XK. et al. Pocket-based lead optimization strategy for the design and synthesis of chitinase inhibitors. J Agric Food Chem. 2019;67:3575–82. https://doi.org/10.1021/acs.jafc.9b00837.

    Article  CAS  PubMed  Google Scholar 

  14. Dabholkar VV, Dave VM, Shah SD. Ultrasound induced bicyclo heterocycles of furan. Heterocycl Lett. 2015;5:661–5.

    CAS  Google Scholar 

  15. Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q. Structural characteristics of an insect group I Chitinase, an enzyme indispensable to moulting. Acta Crystallogr, Sect D: Biol Crystallogr. 2014;70:932–42. https://doi.org/10.1107/S1399004713033841.

    Article  CAS  Google Scholar 

  16. Schüttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein−ligand complexes. Acta Crystallogr, Sect D: Biol Crystallogr. 2004;60:1355–63. https://doi.org/10.1107/S0907444904011679.

    Article  CAS  Google Scholar 

  17. Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS. et al. 2021, University of California, San Francisco, CA, 2021. (https://ambermd.org/CiteAmber.php).

  18. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696–713. https://doi.org/10.1021/acs.jctc.5b00255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74. https://doi.org/10.1002/jcc.20035.

    Article  CAS  PubMed  Google Scholar 

  20. Ong EES, Liow JL. The temperature-dependent structure, hydrogen bonding and other related dynamic properties of the standard TIP3P and CHARMM-modified TIP3P water models. Fluid Phase Equilib. 2019;481:55–65. https://doi.org/10.1016/j.fluid.2018.10.016.

    Article  CAS  Google Scholar 

  21. Yan SR, Toghraie D, Hekmatifar M, Miansari M, Rostami S. Molecular dynamics simulation of Water-Copper nanofluid flow in a three-dimensional nanochannel with different types of surface roughness geometry for energy economic management. J Mol Liq. 2020;311:113222–36. https://doi.org/10.1016/j.molliq.2020.113222.

    Article  CAS  Google Scholar 

  22. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J Chem Theory Comput. 2013;9:3878–88. https://doi.org/10.1021/ct400314y.

    Article  CAS  PubMed  Google Scholar 

  23. Duan HX, Han Q, Yang Q, Wu N, Zhu K, Wang JE, Li HL, inventors; Compound with piperine skeleton structure, its preparation and application in preparing chitinase inhibitor and insecticide. CN111269220. 2020 June 12.

Download references

Acknowledgements

The authors acknowledge financial support from the National Key R&D Program of China (2022YFD1700200), the State Key Laboratory for Biology of Plant Diseases and Insect Pests (SKLOF202306), the National Natural Science Foundation (31972289, 31772207, and 31830076), and the Shenzhen Science and Technology Program (Grant No. KQTD20180411143628272).

Author contributions

Qing Han and Yun-Jiang Zi contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Yang or Hong-Xia Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Zi, YJ., Feng, TY. et al. Vital residues-orientated rational design of butenolide inhibitors targeting Of ChtI. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03211-5

Keywords

Navigation