Skip to main content

Advertisement

Log in

In vitro activity of novel derivatives of 1,3-oxazole-4-carboxylate and 1,3-oxazole-4-carbonitrile against human cytomegalovirus

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Ten 5-functionalized derivatives of 1,3-oxazole-4-carboxylate and 1,3-oxazole-4-carbonitrile were synthesized and their antiviral activities against the human cytomegalovirus (HCMV) were evaluated in vitro. Bioassays showed that seven compounds exhibited considerably higher antiviral activity (EC50: < 0.05 μM) against a normal laboratory HCMV strain (AD-169) in human foreskin fibroblast cells than Ganciclovir (EC50 = 0.32 μM), an anti-HCMV agent in clinical use. Additionally, the HCMV-resistant isolate (GDGr K17) was tested for sensitivity to 1,3-oxazole derivatives with most antiviral potency against the strain AD169. A one of them (5-((2-hydroxyethyl)(methyl)amino)-2-(4-methylphenyl)-1,3-oxazole-4-carbonitrile) showed very high potency (EC50: < 0.05; CC50: >150 µM, and SI50 = 3125) towards the resistant isolate compared to standard drugs Cidofovir (EC50 = 0.10 µM, CC50: >30 µM and SI50: <4). But, in contrast to the primary assays, the antiviral activity of these compounds against both the normal strain and the resistant isolate of HCMV were considerably less than one of Cidofovir in secondary assay. These results provided evidence that derivatives of 1,3-oxazole could be useful for developing new anti-HCMV drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A (2011) Antiviral treatment of cytomegalovirus infection. Infect Disord Drug Targets 11(5):475–503

    Article  CAS  PubMed  Google Scholar 

  • Briner K, Collado I, Fisher MJ, Garcfa-Paredes C, Husain S, Kuklish SL, Mateo AI, O’Brien TP, Ornstein PL, Zgombick J, de Frutos O (2006) Privileged structure based ligands for melanocortin-4 receptors—aliphatic piperazine derivatives. Bioorg Med Chem Lett 16:3449–3453

    Article  CAS  PubMed  Google Scholar 

  • Britt W, Prichard MN (2018) New therapies for human cytomegalovirus infections. Antiviral Res 159:153–174

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Kapoor A, He R, Venkatadri R, Forman M, Posner GH, Arav-Boger R (2014) In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of action. Antimicrob Agents Chemother 58(2):986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison III CA, Kouzarides T, Martignetti JA, Preddie E, Satchwell SC, Tomlinson P, Weston KM, Barrell BG (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Cur Top Microbiol Immunol 154:12–169

    Google Scholar 

  • Chou S (2008) Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol 18(4):233–461

    Article  CAS  PubMed  Google Scholar 

  • Chou S (2015) Rapid In Vitro evolution of human cytomegalovirus UL56 mutations that confer Letermovir resistance. Antimicrob Agents Chemother 59(10):6588–6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F (2018) Molecular determinants and the regulation of human cytomegalovirus latency and reactivation. Viruses 10(8):E444

    Article  CAS  PubMed  Google Scholar 

  • Drach BS, Sviridov EP, Lavrenyk TY (1974) Reaction of α-acylamino-β,β-dichloroacrylonitriles with primary amines. J Org Chem USSR (Engl. Transl.) 10:1278–1280

    Google Scholar 

  • Dulla B, Kirla KT, Rathore V, Deora GS, Kavela S, Maddika S, Chatti K, Reiser O, Iqbal J, Pal M (2013) Synthesis and evaluation of 3­amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti­proliferative properties. Org Biomol Chem 11:3103–3107

    Article  CAS  PubMed  Google Scholar 

  • Emery VC, Cope AV, Bowen EF, Gor D, Griffiths PD (1999) The dynamics of human cytomegalovirus replication in vivo. J Exp Med 190:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fader L, Brault M, Desjardins J, Dansereau N, Lamorte L, Tremblay S, Bilodeau F, Bordeleau J, Duplessis M, Gorys V et al. (2016) Discovery of potent, orally bioavailable inhibitors of human cytomegalovirus. ACS Med Chem Lett 7(5):525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frange P, Leruez-Ville M (2018) Maribavir, brincidofovir and letermovir: efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med Mal Infect 48(8):495–502

    Article  CAS  PubMed  Google Scholar 

  • Gan X, Wang H, Yu Y, Yi W, Zhu S, Li E, Liang Y (2017) Epigenetically repressing human cytomegalovirus lytic infection and reactivation from latency in THP-1 model by targeting H3K9 and H3K27 histone demethylases. PLoS ONE 12(4):e0175390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths P (2002) The treatment of cytomegalovirus infections. J Antimicrob Chemother 49(2):243–253

    Article  CAS  PubMed  Google Scholar 

  • Griffiths P, Baraniak I, Reeves M (2015) The pathogenesis of human cytomegalovirus. J Pathol 235(2):288–297

    Article  CAS  PubMed  Google Scholar 

  • Hanson KE, Swaminathan S (2015) Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 10(10):1545–1548

    Article  CAS  PubMed  Google Scholar 

  • Hartline CB, Keith KA, Eagar J, Harden EA, Bowlin TL, Prichard MN (2018) A standardized approach to the evaluation of antivirals against DNA viruses: orthopox-, adeno-, and herpesviruses. Antiviral Res 159:104–112

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Bisht AS, Juyal D (2017) Systematic scientific study of 1,3-oxazole derivatives as a useful lead for pharmaceuticals: a review. Pharma Innovation 6(1):109–117

    CAS  Google Scholar 

  • Kachaeva MV, Hodyna DM, Semenyuta IV, Pilyo SG, Prokopenko VM, Kovalishyn VV, Metelytsia LO, Brovarets VS (2018) Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput Biol Chem 74:294–303

    Article  CAS  PubMed  Google Scholar 

  • Kachaeva MV, Pilyo SG, Kornienko AM, Prokopenko VM, Zhirnov VV, Prichard MN, Keith KA, Yang G, Wang HK, Banerjee NS, Chow LT, Broker TR, Brovarets VS (2017) In vitro activity of novel 1,3-oxazole derivatives against human papillomavirus. Ibnosina J Med Biomed Sci 9:111–118

    Article  Google Scholar 

  • Kachaeva M, Pilyo S, Popilnichenko S, Kornienko A, Rusanov E, Prokopenko V, Zyabrev V, Brovarets VS (2018) Synthesis of fused heterocycles from 2-aryl-5-(chlorosulfonyl)-1,3-oxazole-4-carboxylates and α-aminoazoles involving the Smiles rearrangement. Curr Chem Lett 7:101–110

    Article  Google Scholar 

  • Kozachenko O, Shablykin O, Brovarets V (2012) Synthesis of 4-alkyl-2-aryl-1,3-oxazole[5,4-d]pyrimidine-7(4)-thiones and 6-alkyl-2-aryl-1,3-oxazole[5,4-d]pyrimidin-7(6)-ones from 2-aroylamino-3,3-dichloroacrylonitriles. Russ J Gen Chem 82(4):739–743

    Article  CAS  Google Scholar 

  • Kornienko A, Pil’O S, Prokopenko V, Brovarets V (2012) Synthesis of 2-aryl-4-cyano-l,3-oxazole-5-sulfonylchlorides and N-substituted sulfonamides. Russ J Gen Chem 82(11):1855–1858

    Article  CAS  Google Scholar 

  • Li X, Huang Y, Xu Z, Zhang R, Liu X, Li Y, Mao P (2018) Cytomegalovirus infection and outcome in immunocompetent patients in the intensive care unit: a systematic review and meta-analysis. BMC Infect Dis 18(1):289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lischka P, Hewlett G, Wunberg T, Baumeister J, Paulsen D, Goldner T, Ruebsamen-Schaeff H, Zimmermann H (2010) In vitro and in vivo activities of the novel anticytomegalovirus compound AIC246. Antimicrob Agents Chemother 54(3):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee WC, Hostetler KY, Evans DH (2005) Mechanism of Inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob Agents Chemother 49:3153–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel D, Mertens T (2006) Antiviral intervention, resistance and perspectives. In: Reddehase M (ed) Cytomegaloviruses molecular biology and immunology. Caister Academic Press, U.K., pp. 573–590

  • Prichard MN (2009) Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 19(4):215–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swellmeen L (2016) 1,3-Oxazole derivatives: a review of biological activities as antipathogenic. Der Pharma Chemica 8(13):269–286

    CAS  Google Scholar 

  • Tan BH (2014) Cytomegalovirus treatment. Curr Treat Options Infect Dis 6(3):256–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyayula S, Michaels MG (2013) Ganciclovir, Foscarnet, and Cidofovir: antiviral drugs not just for cytomegalovirus. J Pediatr Infect Dis 2:286–290

    Article  Google Scholar 

  • Yong MK, Lewin SR, Manuel O (2018) Immune monitoring for CMV in transplantation. Curr Infect Dis Rep 20(4):1–9

    Article  Google Scholar 

  • Zhang HZ, Zhao ZL, Zhou CH (2018) Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 144:444–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Enamine Ltd. for the material and technical support. These studies were funded in whole or in part with Federal funds from the National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract HHSN272201100016I (MNP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr S. Brovarets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachaeva, M.V., Pilyo, S.G., Hartline, C.B. et al. In vitro activity of novel derivatives of 1,3-oxazole-4-carboxylate and 1,3-oxazole-4-carbonitrile against human cytomegalovirus. Med Chem Res 28, 1205–1211 (2019). https://doi.org/10.1007/s00044-019-02365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02365-x

Keywords

Navigation