Skip to main content

Advertisement

Log in

Synthesis of nucleobase-neomycin conjugates and evaluation of their DNA binding, cytotoxicities, and antibacterial properties

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Neomycin is known to preferentially bind to A-form nucleic acid structures including triplex DNA, DNA and RNA hybrid, and duplex RNA. Tethering a DNA intercalator moiety to the C5” position of the ring III of neomycin is a practical approach to develop potent binders targeting various nucleic acid secondary structures via a synergistic effect; however, the minimal stacking surface of the intercalating moiety required to exhibit the effect remains unclear. In the present work, we synthesized four nucleobase and neomycin conjugates via click chemistry. All four conjugates stabilized a DNA oligonucleotide triplex in the thermal denaturation experiments monitored by UV. The guanine-neomycin conjugate (6b) showed a better triplex stabilization effect than neomycin. All the conjugates, as well as neomycin, exhibited no thermal stabilization effect on a human telomeric DNA G-quadruplex. These results suggest that the synergistic effect of binding is vastly dependent on the surface area of the stacking moiety of the conjugates. In addition, tethering a nucleobase to the C5” position of neomycin enhanced the cytotoxicity of neomycin toward MCF-7 and HeLa cancer cells but decreased the antibacterial effect of neomycin against several Gram-negative and Gram-positive bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Neo:

neomycin

rRNA:

ribosomal RNA

TAR:

trans-activation response element

AMEs:

aminoglycoside-modifying enzymes

BQQ:

benzo[f]quino[3,4-b]quinoxaline

DMSO:

dimethyl sulfoxide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

IC50 :

half maximal inhibitory concentration

MIC:

minimum inhibitory concentration

NMR:

nuclear magnetic resonance

UHPLC:

ultra-high-performance liquid chromatography

IR:

infrared

ESI:

electrospray ionization

HRMS:

high-resolution mass spectrometry

TOF:

time of flight

FBS:

fetal bovine serum

DMEM:

Dulbecco’s modified eagle’s medium

KB test:

Kirby–Bauer test

OD:

optical density

References

  • Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular g-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya DP, Micovic L, Charles I, Coffee Jr. RL, Willis B, Xue L (2003a) Neomycin binding to Watson-Hoogsteen (W-H) DNA triplex groove: a model. J Am Chem Soc 125:3733–3744

    Article  CAS  PubMed  Google Scholar 

  • Arya DP, Xue L, Tennant P (2003b) Combining the best in triplex recognition: synthesis and nucleic acid binding of a BQQ-neomycin conjugate. J Am Chem Soc 125:8070–8071

    Article  CAS  PubMed  Google Scholar 

  • Arya DP, Xue L, Willis B (2003c) Aminoglycoside (neomycin) preference is for a-form nucleic acids, not just RNA: results for a competition dialysis study. J Am Chem Soc 125:10148–10149

    Article  CAS  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  • Blount KF, Tor Y (2006) A tale of two targets: differential RNA selectivity of nucleobase-aminoglycoside conjugates. ChemBioChem 7:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Degtyareva NN, Gong C, Story S, Levinson NS, Oyelere AK, Green KD, Garneau-Tsodikova S, Arya DP (2017) Antimicrobial activity, AME resistance, and A-site binding studies of anthraquinone-neomycin conjugates. ACS Infect Dis 3:206–215

    Article  CAS  PubMed  Google Scholar 

  • Edward Lindsell W, Murray C, Preston PN, Woodman TAJ (2000) Synthesis of 1,3-diynes in the purine, pyrimidine, 1,3,5-triazine and acridine series. Tetrahedron 56:1233–1245

    Article  Google Scholar 

  • Fourmy D, Recht MI, Puglisi JD (1998) Binding of neomycin-class aminoglycoside antibiotics to the a-site of 16 s rrna. J Mol Biol 277:347–362

    Article  CAS  PubMed  Google Scholar 

  • Fridman M, Belakhov V, Yaron S, Baasov T (2003) A new class of branched aminoglycosides: pseudo-pentasaccharide derivatives of neomycin b. Org Lett 5:3575–3578

    Article  CAS  PubMed  Google Scholar 

  • Grau-Campistany A, Massaguer A, Carrion-Salip D, Barragan F, Artigas G, Lopez-Senin P, Moreno V, Marchan V (2013) Conjugation of a ru(ii) arene complex to neomycin or to guanidinoneomycin leads to compounds with differential cytotoxicities and accumulation between cancer and normal cells. Mol Pharm 10:1964–1976

    Article  CAS  PubMed  Google Scholar 

  • Green KD, Chen W, Houghton JL, Fridman M, Garneau-Tsodikova S (2010) Exploring the substrate promiscuity of drug-modifying enzymes for the chemoenzymatic generation of n-acylated aminoglycosides. ChemBioChem 11:119–126

    Article  CAS  PubMed  Google Scholar 

  • Guckian KM, Schweitzer BA, Ren RX, Sheils CJ, Tahmassebi DC, Kool ET (2000) Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J Am Chem Soc 122:2213–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie OW (2008) Aminoglycoside induced ototoxicity. Toxicology 249:91–96

    Article  PubMed  Google Scholar 

  • Houghton JL, Green KD, Chen W, Garneau-Tsodikova S (2010) The future of aminoglycosides: the end or renaissance? ChemBioChem 11:880–902

    Article  CAS  PubMed  Google Scholar 

  • Kirk SR, Luedtke NW, Tor Y (2000) Neomycin−acridine conjugate: a potent inhibitor of rev-rre binding. J Am Chem Soc 122:980–981

    Article  CAS  Google Scholar 

  • Liu M, Haddad J, Azucena E, Kotra LP, Kirzhner M, Mobashery S (2000) Tethered bisubstrate derivatives as probes for mechanism and as inhibitors of aminoglycoside 3‘-phosphotransferases. J Org Chem 65:7422–7431

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Minier MA, Franz AH, Curtis M, Xue L (2011) Synthesis of nucleobase-calix[4]arenes via click chemistry and evaluation of their complexation with alkali metal ions and molecular assembly. Supramol Chem 23:806–818

    Article  CAS  Google Scholar 

  • Liu W, Wang S, Dotsenko IA, Samoshin VV, Xue L (2017) Arylsulfanyl groups-suitable side chains for 5-substituted 1,10-phenanthroline and nickel complexes as g4 ligands and telomerase inhibitors. J Inorg Biochem 173:12–20

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Sengupta S, Petersen JL, Akhmedov NG, Shi X (2007) Mitsunobu coupling of nucleobases and alcohols: An efficient, practical synthesis for novel nonsugar carbon nucleosides. J Org Chem 72:5012–5015

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA (2009) Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother 53:2887–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR (2001) Exocyclic groups in the minor groove influence the backbone conformation of DNA. Nucleic Acids Res 29:5036–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C-H, Hendrix M, Scott Priestley E, Greenberg WA (1998) Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem Biol 5:397–406

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Charles I, Arya DP (2002) Pyrene–neomycin conjugate: dual recognition of a DNA triple helix. Chem Commun 70–71

  • Xue L, Ling M, Wang S (2017) A reliable method to measure the melting temperatures of DNA oligonucleotide triplexes. J Undergrad Chem Res 16:19–23

    Google Scholar 

  • Xue L, Ranjan N, Arya DP (2011) Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA. Biochemistry 50:2838–2849

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Keller K, Takemoto JY, Bensaci M, Litke A, Czyryca PG, Chang CW (2009) Synthesis and combinational antibacterial study of 5”-modified neomycin. J Antibiot 62:539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of the Pacific. We also thank Dr. William K. Chan for providing MCF-7 and HeLa cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Siwen Wang, Mandeep Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Singh, M., Ling, M. et al. Synthesis of nucleobase-neomycin conjugates and evaluation of their DNA binding, cytotoxicities, and antibacterial properties. Med Chem Res 27, 1517–1527 (2018). https://doi.org/10.1007/s00044-018-2169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2169-x

Keywords

Navigation