Skip to main content

Advertisement

Log in

In vitro anti-nitrosative, antioxidant, and cytotoxicity activities of plant flavonoids: a comparative study

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The ability of eight flavonoids to react with the biologically relevant reactive nitrogen species, nitric oxide, peroxynitrite, and nitrous acid were investigated in vitro, for the first time. All the investigated flavonoids were found to be potent reactive nitrogen and oxygen species scavengers and resulted in a significant inhibition of 3-nitrotyrosine (3-NT) formation in a dose-dependent manner. All the IC50s were found at the μM level. The results reveal that, the presence of C5–OH and C4’–OH, in the flavonoid skeleton, enhanced the anti-nitrosative activity. The absence of the C2=C3 double bond and/or C4-carbonyl group resulted in slight decrease of the anti-nitrosative activity. However, the presence of C6- and/or C3’-methoxy groups together with C4’–OH dramatically decrease the inhibition capacity. Especially the free hydroxyl groups at 3’ and 4’ of the catechol containing ring B flavonoids as well as both hydroxyl groups at C3 and C5 are necessary for better antioxidant activity. The absence of both C3–OH and/or C3’–OH groups resulted in a remarkable decrease in the antioxidant activity. The cytotoxicity results indicate that the investigated flavonoids are safe to be used up to a concentration of 100 μM and may be utilized as promising sources of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd-Alla HI, Moharram FA, Gaara AH, El-Safty MM (2009) Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z Naturforsch C 64:495–501

    Article  CAS  PubMed  Google Scholar 

  • Abraham LCN, Masakuni T, Isao H, Hajime T (2008) Antioxidant flavonoid glycosides from the leaves of Ficus pumila L. Food Chem 109:415–420

    Article  Google Scholar 

  • Amin HA, Awad HM, Hanna AG (2012) Comparative evaluation of in vitro cytotoxicity, antiviral and antioxidant activities of different soyasapogenols from soybean saponin. Egypt Pharm J 11:73–79

    Google Scholar 

  • Ando Y, Brännström T, Nyhlin N, Uchida K, Näsman B, Suhr O, Olsson T, Uchino M, Ando M (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 156:172–176

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Bartsch H, Pignatelli B, Calmels S, Ohshima H (1993) Inhibition of nitrosation. Basic Life Sci 61:27–44

    CAS  PubMed  Google Scholar 

  • Boersma BJ, Patel RP, Kirk M, Darley-Usmar VM, Barnes S (1999) Chlorination and nitration of soy isoflavones. Arch Biochem Biophys 368:265–275

    Article  CAS  PubMed  Google Scholar 

  • Byun J, Henderson JP, Mueller DM, Heinecke JW (1999) 8-Nitro-2’-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry 38:2590–2600

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Zhu ZQ, Hu TX, Zhu DY (2002) Structure–activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin 23:667–672

    CAS  PubMed  Google Scholar 

  • Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW, No JK, Jung HA (2002) The structure–activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res 16:232–235

    Article  CAS  PubMed  Google Scholar 

  • Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Berghe DV (1998) Structure–activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71–76

    Article  CAS  PubMed  Google Scholar 

  • d’Ischia M, Panzella L, Manini P, Napolitano A (2006) The chemical basis of the antinitrosating action of polyphenolic cancer chemopreventive agents. Curr Med Chem 13:3133–3144

    Article  PubMed  Google Scholar 

  • El-Toumy SA, Omara EA, Brouard I, Bermejo J (2011a) Flavonoids from Centaurea glomerata and antioxidant activity of its extract. Planta Med 77:PG11. doi:10.1055/s-0031-1282495

  • El-Toumy SA, Farrag AH, Ellithey MM, Korien KM (2011b) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. J Pharm Res 4:189–192

    CAS  Google Scholar 

  • Farghaly TA, Abdel Hafez NA, Ragab EA, Awad HM, Abdalla MM (2010) Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur J Med Chem 45:492–500

    Article  CAS  PubMed  Google Scholar 

  • Gamez EJ, Luyengi L, Lee SK, Zhou LF, Frog HH, Kinghorn AD (1998) Antioxidant flavonoid glycosides from Daphniphyllum calycinum. J Nat Prod 61:706–708

    Article  CAS  PubMed  Google Scholar 

  • Haenen GR, Paquay JB, Korthouwer RE, Bast A (1997) Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 236:591–593

    Article  CAS  PubMed  Google Scholar 

  • Hamdy NA, Anwar MM, Abu-Zied KM, Awad HM (2013) Synthesis, tumor inhibitory and antioxidant activity of new polyfunctionally 2-substituted 5,6,7,8-tetrahydronaphthalene derivatives containing pyridine, thioxopyridine and pyrazolopyridine moieties. Acta Pol Pharm 70:987–1001

    CAS  PubMed  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  CAS  PubMed  Google Scholar 

  • Hou WC, Lin RD, Lee TH, Huang YH, Hsu FL, Lee ML (2005) The phenolic constituents and free radical scavenging activities of Gynura formosana Kiamnra. J Sci Food Agr 85:615–621

    Article  CAS  Google Scholar 

  • Hussein RM, Shahein YE, El Hakim AE, Awad HM (2010) Biochemical and molecular characterization of three colored types of roselle (Hibiscus sabdariffa L.). J Am Sci 6:726–733

    Google Scholar 

  • Kyrtopoulos SA (1989) N-nitroso compound formation in human gastric juice. Cancer Surv 8:423–442

    CAS  PubMed  Google Scholar 

  • Lai HH, Yen GC (2002) Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci Biotechnol Biochem 66:22–28

    Article  CAS  PubMed  Google Scholar 

  • Lamas S, Perez-Sala D, Moncada S (1998) Nitric oxide: from discovery to the clinic. Trends Pharmacol Sci 19:436–438

    Article  CAS  PubMed  Google Scholar 

  • Lee SYH, Munerol B, Pollard S, Youdim KA, Pannala AS, Kuhnle GGC, Debnam ES, Rice-Evans C, Spencer JPE (2006) The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Radic Biol Med 40:323–334

    Article  CAS  PubMed  Google Scholar 

  • Mapp PI, Klocke R, Walsh DA, Chana JK, Stevens CR, Gallagher PJ, Blake DR (2001) Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum 44:1534–1539

    Article  CAS  PubMed  Google Scholar 

  • Michael HN, Awad HM, El-Sayed NH, Pare PW (2010) Chemical and antioxidant investigations: norfolk pine needles (Araucaria excelsa). Pharm Biol 48:534–538

    Article  CAS  PubMed  Google Scholar 

  • Mondoro TH, Shafer BC, Vostal JG (1997) Peroxynitrite induced tyrosine nitration and phosphorylation in human platelets. Free Radic Biol Med 22:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Monteiro HP (2002) Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events. Free Radic Biol Med 33:765–773

    Article  CAS  PubMed  Google Scholar 

  • Moriel P, Abdalla DS (1997) Nitrotyrosine bound to beta-VLDLapoproteins: a biomarker of peroxynitrite formation in experimental atherosclerosis. Biochem Biophys Res Commun 232:332–335

    Article  CAS  PubMed  Google Scholar 

  • Oldreive C, Rice-Evance C (2001) The mechanisms for nitration and nitrotyrosine formation in vitro and in vivo: impact of diet. Free Radic Res 35:215–231

    Article  CAS  PubMed  Google Scholar 

  • Pessêgo M, Costa AMR, Moreira JA (2011) Importance of phenols structure on their activity as antinitrosating agents: A kinetic study. J Pharm Bioallied Sci 3:128–134

    Article  PubMed Central  PubMed  Google Scholar 

  • Pollard SE, Kuhnle GGC, Vauzour D, Vafeiadou K, Tzounis X, Whiteman M, Rice-Evans C, Spencer JPE (2006) The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun 350:960–968

    Article  CAS  PubMed  Google Scholar 

  • Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E (2003) Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 1642:115–123

    Article  CAS  PubMed  Google Scholar 

  • Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM (2010) Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 276:85–94

    Article  CAS  PubMed  Google Scholar 

  • Rueff J, Gaspar J, Laires A (1995) Structural requirements for mutagenicity of flavonoids upon nitrosation. A structure–activity study. Mutagenesis 10:325–328

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Tamaki R, Shimoji H, Ichiba T, Fukushi Y, Tahara S, Yamasaki H (2003) Enzymatic nitration of phytophenolics: evidence for peroxynitrite-independent nitration of plant secondary metabolites. FEBS Lett 553:377–380

    Article  CAS  PubMed  Google Scholar 

  • Samoszuk M, Brennan ML, To V, Leonor L, Zheng L, Fu X, Hazen SL (2002) Association between nitrotyrosine levels and microvascular density in human breast cancer. Breast Cancer Res Treat 74:271–278

    Article  CAS  Google Scholar 

  • Sayed HM, Mohamed MH, Farag SF, Mohamed GA, Ebel R, Omobuwajo ORM, Proksch P (2006) Phenolics of cyperus alopecuroides rottb. inflorescences and their biological activities. Bull Pharm Sci, Assiut Univ 29:9–32

    CAS  Google Scholar 

  • Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    Article  CAS  PubMed  Google Scholar 

  • Spencer JPE, Wong J, Jenner A, Aruoma OI, Cross CE, Halliwell B (1996) Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3 morpholinosydnonimine. Chem Res Toxicol 9:1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No. 260.

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanem M. Awad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, H.M., Abd-Alla, H.I., Mahmoud, K.H. et al. In vitro anti-nitrosative, antioxidant, and cytotoxicity activities of plant flavonoids: a comparative study. Med Chem Res 23, 3298–3307 (2014). https://doi.org/10.1007/s00044-014-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0915-2

Keywords

Navigation