Skip to main content
Log in

Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Compared with epigallocatechin gallate (EGCG), its epimer gallocatechin gallate (GCG) is more stable and more bioactive, even when least contained in green tea. In this study, EGCG can be selectively epimerized into GCG catalyzed by a phosphate buffer (pH 5.8) at 60 °C for 2 h with the highest yield of 65.6 %. A plausible mechanism for this conversion was also presented. To evaluate the anti-diabetic activity of GCG, we had investigated an oral glucose tolerance test and determined the plasma levels of glucose, insulin, triglyceride, and free fatty acid in a streptozotocin-induced diabetic rat model system. The results suggested that both GCG and EGCG might have anti-diabetic effects by increasing sensitivity of insulin, and GCG is more active than EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Takagi K, Haneishi A, Yamamoto T, Tanaka T, Noguchi T, Nakamura S, Yamada K (2011) (-)-Epigallocatechin-3-gallate enhances the expression of an insulin-inducible transcription factor gene via a phosphoinositide 3-kinase/atypical protein kinase C lambda pathway. J Agric Food Chem 59:13360–13364

    Article  PubMed  CAS  Google Scholar 

  • Brunner H, Opitz D (1997) Enantioselective catalysis. Part 102. Epimerization of glucose and mannose in the presence of nickel(II) complexes of optically active ligands. J Mol Catal A Chem 118:273–282

    Article  CAS  Google Scholar 

  • Chan PT, Fong WP, Cheung YL, Huang Y, Ho WK, Chen ZY (1999) Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J Nutr 129:1094–1101

    PubMed  CAS  Google Scholar 

  • Cheng KJ, Liang GL, Hu CQ (2008) Acid-catalyzed epimerization of kobophenol A to carasinol B. Molecules 13:938–942

    Article  PubMed  CAS  Google Scholar 

  • Davis AL, Cai Y, Davies AP, Lewis JR (1996) 1H and 13C NMR assignments of some green tea polyphenols. Magn Reson Chem 34:887–890

    Article  CAS  Google Scholar 

  • Gordon NC, Wareham DW (2010) Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. Int J Antimicrob Agents 36:129–131

    Article  PubMed  CAS  Google Scholar 

  • Hara Y (ed) (2001) Green Tea, health benefits and applications. Dekker, New York

    Google Scholar 

  • Hatano T, Hori M, Kusuda M, Ohyabu T, Ito H, Yoshida T (2004) Characterization of the oxidation products of (-)-epigallocatechin gallate, a bioactive tea polyphenol, on incubation in neutral solution. Heterocycles 63:1547–1554

    Article  CAS  Google Scholar 

  • Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DTY (2009) Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 57:6140–6147

    Article  PubMed  CAS  Google Scholar 

  • Ikeda I, Kobayashi M, Hamada T, Tsuda K, Goto H, Imaizumi K, Nozawa A, Sugimoto A, Kakuda T (2003) Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J Agric Food Chem 51:7303–7307

    Article  PubMed  CAS  Google Scholar 

  • Kada T, Kaneko K, Matsuzaki S, Matsuzaki T, Hara Y (1985) Detection and chemical identification of natural bio-antimutagens. A case of the green tea factor. Mutat Res 150:127–132

    Article  PubMed  CAS  Google Scholar 

  • Khaksa G, Nalini K, Bhat M, Udupa N (1998) High-performance liquid chromatographic determination of insulin in rat and human plasma. Anal Biochem 260:92–95

    Article  PubMed  CAS  Google Scholar 

  • Kolaric S, Sunjic V (1996) Comparative study of C(2) epimerization of -glucose and -mannose catalyzed by water soluble organometallic complexes with nitrogen ligands. J Mol Catal A: Chem 110:181–188

    Article  CAS  Google Scholar 

  • Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M (2010) Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. J Agric Food Chem 58:1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kim CW, Kim JK, Shin HJ, Baik JH (2008) GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats. Lipids 43:419–429

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto N, Ishigaki F, Ishigaki A, Iwashina H, Hard Y (1993) Reduction of blood glucose levels by tea catechin. Biosci Biotechnol Biochem 32:525–527

    Article  Google Scholar 

  • Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes 26:1459–1464

    Article  CAS  Google Scholar 

  • Noma A, Okabe H, Kita M (1973) A new colorimetric micro-determination of free fatty acids in serum. Clin Chim Acta 43:317–320

    Article  PubMed  CAS  Google Scholar 

  • Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322:339–346

    Article  PubMed  CAS  Google Scholar 

  • Sang S, Lee MJ, Hou Z, Ho CT, Yang CS (2005) Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem 53:9478–9484

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Wada S, Hayashi T, Ikegaya K, Ogaku S, Ynano S, Mortia N (1988) Studies on hypoglycemic constituent of Japanese tea. Ykugaku Zasshi 108:964–970

    CAS  Google Scholar 

  • Shimizu M, Kobayashi Y, Suzuki M, Satsu H, Miyamoto Y (2000) Regulation of intestinal glucose transport by tea catechins. Biofactors 13:61–65

    Article  PubMed  CAS  Google Scholar 

  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H (1998) Wide distribution of [3H]-(-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Sano M, Yoshida R, Degawa M, Miyase T, Maeda-Yamamoto M (2003) Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure. J Agric Food Chem 51:510–514

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhou WB, Jiang XH (2008) Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J Agric Food Chem 56:2694–2701

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J, Kawabata J, Niki R (1998) Isolation and identification of acetyl-CoA carboxylase inhibitors from green tea (Camellia sinensis). Biosci Biotechnol Biochem 62:532–534

    Article  PubMed  CAS  Google Scholar 

  • Whittington KB, Solomon SS, Lu ZN, Selawry H (1991) Islet allografts in the cryptorchid testes of spontaneously diabetic BB/Wor dp rats: response to glucose, glipizide, and arginine. Endocrinology 128:2671–2677

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS (2004) Effect of green tea supplementation on insulin sensitivity in Sprague–Dawley rats. J Agric Food Chem 52:643–648

    Article  PubMed  CAS  Google Scholar 

  • Yang TTC, Koo MWL (2000) Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci 66:411–423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the China Scholarship Council and the Planned Science and Technology Project of Hunan Province, China (2011TT2062), and was partially funded by the National Department Public Benefit Research Foundation of Ministry of Environmental Protection of China (200909066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwu Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Guo, Y., Cai, B. et al. Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity. Med Chem Res 22, 3372–3378 (2013). https://doi.org/10.1007/s00044-012-0352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0352-z

Keywords

Navigation