Skip to main content

Advertisement

Log in

Factors affecting primary succession of glacier foreland vegetation in the European Alps

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Vegetation succession on glacier forelands has been well-studied. However, most of the studies investigated only one or few glacier forelands. We studied regional variations in vegetation succession on 16 glacier forelands in the European Alps. To improve our understanding of how vegetation succession is regulated by environmental conditions, we took edaphic and climatic factors into account. We collected vegetation data in three stages (early; middle; late) along a successional gradient on glacier forelands in the Eastern and Western European Alps. The progressions of species richness, vegetation cover and composition during primary succession were compared between these two regions. In addition, the effects of climatic and edaphic factors and grazing were tested. Our results reveal that the vegetation from the early stage did not differ between the regions and different elevations. With progressing time, and especially in the late successional stage, several vegetation differences emerged. The forelands of the Western Alps already developed to open shrubland, while the forelands of the Eastern Alps so far only developed toward grassland. Surprisingly, these differences cannot be explained by different precipitation amounts, but possibly by different regional species pools and elevations of the treelines. We conclude that a complex of edaphic factors closely related to terrain age, regional differences in the species pool, and the different elevation of the treeline in the eastern and western Alps mostly influenced later stages of primary succession on glacier forelands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina. Haupt, Berlin

    Google Scholar 

  • Aeschimann D, Rasolofo N, Theurillat J-P (2011) Analyse de la flore des Alpes. 1: historique et biodiversité. Candollea 66:27–55

    Article  Google Scholar 

  • Austrheim G (2002) Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecol 161:193–205

    Article  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology, the study of plant communities. McGray Hill, New York

    Google Scholar 

  • Burga CA et al (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora 205:561–576

    Article  Google Scholar 

  • Caccianiga M, Andreis C (2004) Pioneer herbaceous vegetation on glacier forelands in the Italian Alps. Phytocoenologia 34:55–89

    Article  Google Scholar 

  • Caccianiga M, Andreis C, Cerabolini B (2001) Vegetation and environmental factors during primary succession on glacier forelands: some outlines from the Italian Alps. Plant Biosyst 135:295–310

    Article  Google Scholar 

  • Callaway RM et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  PubMed  Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648

    Article  PubMed  Google Scholar 

  • Coaz J (1887) Erste Ansiedlung phanerogamer Pflanzen auf von Gletschern verlassenen Böden. Mitt Naturforsch Ges Bern aus dem Jahre 1886:3–12

  • Cooper WS (1923) The recent ecological history of Glacier Bay, Alaska; II: the present vegetation cycle. Ecology 4:223–246

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. UTB, Stuttgart

    Google Scholar 

  • Dolezal J, Homma K, Takahashi K, Vyatkina M, Yakubov V, Vetrova V, Hara T (2008) Primary succession following deglaciation at Koryto glacier valley, Kamchatka. Arct Antarct Alp Res 40:309–322

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Erschbamer B, Kneringer E, Niederfriniger Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps. Flora 196:304–312

    Google Scholar 

  • Erschbamer B, Ruth NS, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862

    Article  Google Scholar 

  • Frenot Y, Cannavacciuolo M, Bellido A, Gloaguen JC (1998) Primary succession on glacier forelands in the subantarctic Kerguelen Islands. J Veg Sci 9:75–84

    Article  Google Scholar 

  • Friedel H (1938) Die Pflanzenbesiedlung im Vorfeld des Hintereisferners. Zeitschrift fur Gletscherkunde 26:215–239

    Google Scholar 

  • Garibotti I, Pissolito C, Villalba R (2011) Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes. Arct Antarct Alp Res 43:555–567

    Article  Google Scholar 

  • Haugland JE, Beatty SW (2005) Vegetation establishment, succession and microsite frost disturbance on glacier forelands within patterned ground chronosequences. J Biogeogr 32:145–153

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. J Climatol 25:1965–1978

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge

  • Jochimsen M (1970) Die Vegetationsentwicklung auf Moränenboden in Abhängigkeit von einigen Umweltfaktoren. Veröffentlichungen der Universität Innsbruck 46:5–22

    Google Scholar 

  • Jones CC, Del Moral R (2005) Patterns of primary succession on the foreland of Coleman Glacier, Washington, USA. Plant Ecol 180:105–116

    Article  Google Scholar 

  • Jones GA, Henry GHR (2003) Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J Biogeogr 30:277–296

    Article  Google Scholar 

  • Kaufmann R (2001) Invertebrate succession on an alpine glacier foreland. Ecology 82:2261–2278

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32:519–535

    Article  Google Scholar 

  • Lüdi W (1945) Besiedlung und Vegetationsentwicklung auf den jungen Seitenmoränen des großen Aletschgletschers mit einem Vergleich der Besiedlung im Vorfeld des Rhonegletschers und des Oberen Grindelwaldgletschers. Ber Geobot Forsch Inst Rübel Zürich 1944:35–112

  • Matthews JA (1999) Disturbance regimes and ecosystem response on recently-deglaciated substrates. In: Walker LR (ed) Ecosystems of disturbed ground, ecosystems of the world 16. Elsevier, New York, pp 17–37

    Google Scholar 

  • Matthews JA (2008) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthews JA, Whittaker RJ (1987) Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arct Antarct Alp Res 19:385–395

    Article  Google Scholar 

  • Mayer R, Kaufmann R, Vorhauser K, Erschbamer B (2009) Effects of grazing exclusion on species composition in high-altitude grasslands of the Central Alps. Basic Appl Ecol 10:447–455

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McCune B, Meffort MJ (2006) PC-ORD, multivariate analysis of ecological data, Version 5.3.1. Software, Gleneden Beach

    Google Scholar 

  • Nagl F, Erschbamer B (2010) Vegetation und Besiedlungsstrategien. In: Koch EM, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University Press, Innsbruck, pp 121–143

    Google Scholar 

  • Niederfriniger Schlag R, Erschbamer B (2000) Germination and establishment of seedlings on a glacier foreland in the central Alps, Austria. Arct Antarct Alp Res 32:270–277

    Article  Google Scholar 

  • Oksanen J et al (2011) Vegan: community ecology package. R package version 2.0-2. http://CRAN.Rproject.org/package=vegan. Accessed 6 Mar 2014

  • Raffl C, Erschbamer B (2004) Comparative vegetation analyses of two transects crossing a characteristic glacier valley in the Central Alps. Phytocoenologia 34:225–240

    Article  Google Scholar 

  • Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a Glacier Valley, Central Alps, Austria. Arct Antarct Alp Res 38:421–428

    Article  Google Scholar 

  • Reichelt G, Wilmanns O (1973) Vegetationsgeographie. Westermann, Braunschweig

    Google Scholar 

  • Robbins J, Matthews J (2010) Regional variation in successional trajectories and rates of vegetation change on glacier forelands in South-Central Norway. Arct Antarct Alp Res 42:351–361

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696

    Article  Google Scholar 

  • Tscherko D, Hammesfahr U, Marx MC, Kandeler E (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol Biochem 36:1685–1698

    Article  CAS  Google Scholar 

  • Tscherko D, Hammesfahr U, Zeltner G, Kandeler E, Bocker R (2005) Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl Ecol 6:367–383

    Article  CAS  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

We are Grateful to Prof. Dr. Jürg Stöcklin (University of Basel) for providing valuable comments on the design of the study. We want to thank Dr. Yvonne Bachmann (University of Frankfurt) for help with processing environmental data and Dr. Markus Bernhardt-Römermann (University of Jena) and Felix Heydel (University of Frankfurt) for providing help with statistics. This study was partly funded by the research funding program ‘LOEWE–Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz’ of Hesse’s Ministry of Higher Education, Research and the Arts. Finally, we are Grateful to two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Tackenberg.

Additional information

K. Schumann, S. Gewolf are contributed eqaully to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumann, K., Gewolf, S. & Tackenberg, O. Factors affecting primary succession of glacier foreland vegetation in the European Alps. Alp Botany 126, 105–117 (2016). https://doi.org/10.1007/s00035-016-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-016-0166-6

Keywords

Navigation