Skip to main content
Log in

Unified stability analysis for a Volterra integro-differential equation under creation time perspective

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Many real-world applications are modeled by Volterra integral–differential equations of the form

$$\begin{aligned} u_{tt}-\Delta u +\int \limits _{\alpha }^{t}g(t-s)\Delta u(s)\, \mathrm{d}s = 0 \;\; \text{ in } \;\; \Omega \times (0,\infty ), \end{aligned}$$

where \(\Omega \) is a bounded domain of \({\mathbb {R}}^N\) and g is a memory kernel. Our main concern is with the concept of so-called creation time, the time \(\alpha \) where past history begins. Separately, the cases \(\alpha =-\infty \) (history) and \(\alpha =0\) (null history) were extensively studied in the literature. However, as far as we know, there is no unified approach with respect to the intermediate case \(-\infty< \alpha <0\). Therefore we provide new stability results featuring (i) uniform and general stability when the creation time \(\alpha \) varies over full range \((-\infty ,0)\) and (ii) connection between the history and the null history cases by means of a rigorous backward (\(\alpha \rightarrow -\infty \)) and forward (\(\alpha \rightarrow 0^-\)) limit analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(5), 1342–1372 (2008)

    Article  MathSciNet  Google Scholar 

  2. Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. 347(15), 867–872 (2009)

    Article  MathSciNet  Google Scholar 

  3. Araújo, R.O., Ma, T.F., Qin, Y.: Long-time behavior of a quasilinear viscoelastic equation with past history. J. Differ. Equ. 254, 4066–4087 (2013)

    Article  MathSciNet  Google Scholar 

  4. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Wien. Ber. 70, 275–306 (1874)

    MATH  Google Scholar 

  5. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Wied. Ann. 5, 430–432 (1878)

    Article  Google Scholar 

  6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Ferreira, J.: Existence and uniform decay for a non-linear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24(14), 1043–1053 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control. Optim. 42(4), 1310–1324 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chepyzhov, V.V., Pata, V.: Some remarks on stability of semigroups arising from linear viscoelasticity. Asymptot. Anal. 46(3–4), 251–273 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Conti, M., Gatti, S., Pata, V.: Uniform decay properties of linear Volterra integro-differential equations. Math. Models Methods Appl. Sci. 18(1), 21–45 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dafermos, C.M.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MathSciNet  Google Scholar 

  11. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  Google Scholar 

  12. Fabrizio, M., Giorgi, C., Pata, V.: A new approach to equations with memory. Arch. Ration. Mech. Anal. 198(1), 189–232 (2010)

    Article  MathSciNet  Google Scholar 

  13. Fabrizio, M., Lazzari, B.: On the existence and asymptotic stability of solutions for linear viscoelastic solids. Arch. Ration. Mech. Anal. 116, 139–152 (1991)

    Article  Google Scholar 

  14. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    MATH  Google Scholar 

  15. Giorgi, C., Lazzari, B.: On the stability for linear viscoelastic solids. Q. Appl. Math. 55(4), 659–675 (1997)

    Article  MathSciNet  Google Scholar 

  16. Giorgi, C., Naso, M.G., Pata, V.: Exponential stability in linear heat conduction with memory: a semigroup approach. Commun. Appl. Anal. 5, 121–133 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Giorgi, C., Muñoz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)

    Article  MathSciNet  Google Scholar 

  18. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous dynamical systems with memory. Prog. Nonlinear Differ. Equ. Appl. 50, 155–178 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal. Appl. 382, 748–760 (2011)

    Article  MathSciNet  Google Scholar 

  20. Guesmia, A., Messaoudi, S.A.: A new approach to the stability of an abstract system in the presence of infinite history. J. Math. Anal. Appl. 416, 212–228 (2014)

    Article  MathSciNet  Google Scholar 

  21. Guo, Y., Rammaha, M., Sakuntasathien, S., Titi, E., Toundykov, D.: Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping. J. Differ. Equ. 257(10), 3778–3812 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hrusa, W.J.: Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data. SIAM J. Math. Anal. 16(1), 110–134 (1985)

    Article  MathSciNet  Google Scholar 

  23. Hrusa, W.J., Nohel, J., Renardy, M.: Mathematical Problems in Viscoelasticity. In: Brezis, H., et al. (eds.) Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35. Wiley, New York (1987)

    Google Scholar 

  24. Lasiecka, I., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54(3), 031504 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lasiecka, I., Wang, X.: Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: Favini, A., Fragnelli, G., Mininni, R. (eds.) New Prospects in Direct, Inverse and Control Problems for Evolution Equations, pp. 271–303. Springer, Cham (2014)

    Google Scholar 

  26. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complut. 12(1), 251–283 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)

    Article  MathSciNet  Google Scholar 

  28. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. Theory Methods Appl. 69(8), 2589–2598 (2008)

    Article  MathSciNet  Google Scholar 

  29. Messaoudi, S.A., Al-Khulaifi, W.: General and optimal decay for a quasilinear viscoelastic equation. Appl. Math. Lett. 66, 16–22 (2017)

    Article  MathSciNet  Google Scholar 

  30. Muñoz Rivera, J.E.: Asymptotic behavior in linear viscoelasticity. Q. Appl. Math. 52(4), 628–648 (1994)

    Article  Google Scholar 

  31. Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)

    Article  MathSciNet  Google Scholar 

  32. Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys. 53(5), 053702 (2012)

    Article  MathSciNet  Google Scholar 

  33. Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77, 333–360 (2009)

    Article  MathSciNet  Google Scholar 

  34. Pata, V.: Exponential stability in linear viscoelasticity with almost flat memory kernels. Commun. Pure Appl. Anal. 9, 721–730 (2010)

    Article  MathSciNet  Google Scholar 

  35. Prüss, J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics, vol. 87. Birkhäuserg Verlag, Basel (1993)

    Book  Google Scholar 

  36. Tatar, N.: Arbitrary decays in linear viscoelasticity. J. Math. Phys. 52(1), 013502 (2011)

    Article  MathSciNet  Google Scholar 

  37. Volterra, V.: Sur les équations intégro-différentielles et leurs applications. Acta Math. 35, 295–356 (1912)

    Article  MathSciNet  Google Scholar 

  38. Volterra, V.: Leçons sur les fonctions de lignes. Gauthier-Villars, Paris (1913)

    MATH  Google Scholar 

  39. Yassine, H.: Convergence to equilibrium of solutions to a nonautonomous semilinear viscoelastic equation with finite or infinite memory. J. Differ. Equ. 263(11), 7322–7351 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their comments and remarks on a previous version of this paper. M. A. Jorge Silva has been partially supported by the CNPq Grant 301116/2019-9. T. F. Ma has been partially supported by the CNPq Grant 315165/2021-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to To Fu Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes Tavares, E.H., Jorge Silva, M.A. & Ma, T.F. Unified stability analysis for a Volterra integro-differential equation under creation time perspective. Z. Angew. Math. Phys. 73, 118 (2022). https://doi.org/10.1007/s00033-022-01756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01756-2

Keywords

Mathematics Subject Classification

Navigation